DOI QR코드

DOI QR Code

Physics analysis of new TRU recycling options using FCM and MOX fueled PWR assemblies

  • Cho, Ye Seul (Department of Nuclear Engineering, Kyung Hee University) ;
  • Hong, Ser Gi (Department of Nuclear Engineering, Kyung Hee University)
  • Received : 2019.07.15
  • Accepted : 2019.10.07
  • Published : 2020.04.25

Abstract

In this work, new multi-recycling options of TRU nuclides using PWR fuel assemblies comprised of MOX and FCM (Fully Ceramic Micro Encapsulated) fuels are suggested and neutronically analyzed. These options do not use a fully recycling of TRU but a partial recycling where TRUs from MOX fuels are recycled while the ones from FCM fuels are not recycled due to their high consumption rate resulted from high burnup. In particular, additional external TRU feed in MOX fuels for each cycle was considered to significantly increase the TRU consumption rate and the finally selected option is to use external TRU and enriched uranium feed as a makeup for the heavy metal consumption in MOX fuels. This hybrid external feeding of TRU and enriched uranium in MOX fuel was shown to be very effective in significantly increasing TRU consumption rate, maintaining long cycle length, and achieving negative void reactivity worth during recycling.

Keywords

References

  1. W.S. Yang, T.K. Kim, T.A. Taiwo, Performance evaluation of two-stage fuel cycle based on PWR and ADS, in: Proceedings of ICAPP2013, Jeju, Island, Korea, April 14-18, 2013.
  2. M. Salvatores, G. Palmiotti, Radioactive waste partitioning and transmutation within advanced fuel cycles: achievements and challenges, Prog. Part. Nucl. Phys. 66 (2011) 144-166. https://doi.org/10.1016/j.ppnp.2010.10.001
  3. S. Zhou, H. Wu, Y. Zheng, Flexibility of ADS for minor actinides transmutation in different two-stage PWR-ADS fuel cycle scenarios, Ann. Nucl. Energy 111 (2018) 271-279. https://doi.org/10.1016/j.anucene.2017.08.037
  4. K. Ikeda, H. Sekimoto, TRU burning by dual tier system of LWR-SFR, Prog. Nucl. Energy 53 (2011) 902-908. https://doi.org/10.1016/j.pnucene.2011.05.020
  5. Y. Zheng, M. He, L. Cao, H. Wu, X. Li, S. Zhou, Reactor core transient analysis of an innovative high-level nuclear waste transmuter with metal fuel, Int. J. Energy Res. 41 (2017) 1322-1334. https://doi.org/10.1002/er.3715
  6. D. Kim, S.G. Hong, C.J. Park, Coupling of an innovative small PWR and advanced sodium-cooled fast reactor for incineration of TRU from oncethrough PWRs, Int. J. Energy Res. 40 (2016) 216-229. https://doi.org/10.1002/er.3456
  7. W. You, S.G. Hong, An advanced sodium-cooled fast reactor core concept using uranium-free metallic fuels for maximizing TRU burning rate, Sustainability 9 (2017) 2225-2245. https://doi.org/10.3390/su9122225
  8. S.G. Hong, H.L. Hyun, W. You, Core design options of an ultra-long-cycle sodium cooled reactor with effective use of PWR spent fuel for sustainable energy supply, Int. J. Energy Res. 41 (2017) 854-866. https://doi.org/10.1002/er.3677
  9. T.K. Kim, T.A. Stillman, T.A. Taiwo, R. N Hill, P. J Finck, M. Salvatores, Assessment of transuranics stabilization in PWRs, in: Proceedings of PHYSOR2002, Seoul, Korea, October 7-10, 2002.
  10. E. Shwageraus, P. Hejzlar, M.S. Kazimi, A combined nonfertile and UO2 PWR fuel assembly for actinide waste minimization, Nucl. Technol. 149 (2005) 281-303. https://doi.org/10.13182/NT05-A3596
  11. G. Youinou, A. Vasile, Plutonium multirecycling in standard PWRs loaded with evolutionary fuels, Nucl. Sci. Eng. 151 (2005) 25-45. https://doi.org/10.13182/NSE05-A2526
  12. T.K. Kim, T.A. Stillman, T.A. Taiwo, R. N Hill, M. Salvatores, P. J Finck, Assessment of a heterogeneous PWR assembly for plutonium and minor actinide recycle, Nucl. Technol. 155 (2006) 34-54. https://doi.org/10.13182/NT06-A3744
  13. S.G. Hong, S.Y. Park, K.H. Lee, J.Y. Cho, C.K. Jo, W.J. Lee, F. Venneri, Physics study of deep-burning of spent fuel transuranics using commercial PWR cores, Nucl. Eng. Des. 259 (2013) 79-86. https://doi.org/10.1016/j.nucengdes.2013.02.042
  14. G.H. Bae, S.G. Hong, A small long-cycle PWR core design concept using fully ceramic micro-encapsulated (FCM) and UO2-ThO2 fuels for burning of TRU, J. Nucl. Sci. Technol. 52 (2015) 1540-1551. https://doi.org/10.1080/00223131.2015.1018364
  15. L.L. Snead, K.A. Terrani, F. Venneri, Y.H. Kim, J.S. Tulenko, C.W. Forsberg, P. F Peterson, E. Lahoda, Fully ceramic micro-encapsulated fuels: a transformational technology for present and next generation reactors - preliminary analysis of FCM fuel reactor operation, Trans. Am. Nucl. Soc. 104 (2011) 671-674.
  16. S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, Accident tolerant fuels for LWRs. a perspective, J. Nucl. Mater. 448 (2014) 374-379. https://doi.org/10.1016/j.jnucmat.2013.12.005
  17. J.Y. Cho, et al, DeCART2D v1.0 User's Manual. KAERI/TR-5116/2013.
  18. G. Croff. A User's Manual for the ORIGEN2 Computer Code. ORNL/TM-7175.
  19. W. Aruquipa, C.E. Velasquez, et al., Reprocessing techniques of LWR spent fuel for reutilization in hybrid systems and IV generation reactors, in: International Nuclear Atlantic Conference (INAC2017), Belo Horizonte, MG, Brazil, October 23-27, 2017.
  20. Y.S. Cho, D.H. Hwang, S.G. Hong, Recycling study of PWR spent fuel TRU in the PWR fuel assembly, in: Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 18-19, 2017.
  21. D.J. Kim, K.S. Kim, D.S. Kim, J.S. Oh, J.H. Kim, J.H. Yang, Y.H. Koo, Development status of microcell UO2 pellet for accident-tolerant fuel, Nucl. Eng. and Technol. 50 (2018) 253-258. https://doi.org/10.1016/j.net.2017.12.008
  22. Y.S. Cho, D.H. Hwang, S.G. Hong, A neutronic study of TRU multi-recycling in MOX and FCM fueled PWR assemblies, in: Proceedings of PHYSOR2018, Cancun, Mexico, April 22-26, 2018.
  23. Y.S. Cho, D.H. Hwang, S.G. Hong, A comparative study of recycling options for high consumption of TRU using PWR fuel assemblies, in: Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 17-18, 2018.
  24. J.Y. Choi, D.H. Hwang, S.G. Hong, W.J. Lee, F. Venneri, A SMR PWR reactor core design using nitride FCM fuels with FeCrAl cladding and forced convection circulation, in: 37th Annual Conference of the Canadian Nuclear Society and 41st Annual CNS/CAN Student Conference, Niagara Falls, Canada, June 4-7, 2017.
  25. D.H. Hwang, J.Y. Choi, S.G. Hong, W.J. Lee, F. Venneri, A small modular PWR core design using nitride FCM fuels with FeCrAl cladding for natural circulation, in: 37th Annual Conference of the Canadian Nuclear Society and 41st Annual CNS/CAN Student Conference, Niagara Falls, Canada, June 4-7, 2017.

Cited by

  1. Dissolution Behavior of Simulated Spent Nuclear Fuel in LiCl-KCl-UCl3 Molten Salt vol.2021, 2020, https://doi.org/10.1155/2021/9048775