DOI QR코드

DOI QR Code

Exploring Factors Affecting Consumers' Intention to Use Smartwatch in Bangladesh: An Empirical Study

  • Md. Mahiuddin Sabbir (Department of Marketing, University of Barishal) ;
  • Sharmin Akter (Department of Marketing, University of Barishal) ;
  • Tahsin Tabish Khan (Department of Marketing, University of Barishal) ;
  • Amit Das (Department of Marketing, University of Barishal)
  • Received : 2019.12.25
  • Accepted : 2020.06.23
  • Published : 2020.09.30

Abstract

Smartwatch, one of the popular forms of wearable gadget and a converging point of information technology innovation and fashion, is gaining much acceptance in countries belonging to the Asia-Pacific region. However, little is known about factors affecting consumers' intention to use smartwatches in Bangladesh. Therefore, this study explores factors driving Bangladeshi consumers' intention to use smartwatches and expands the general understanding of the emerging Asia-Pacific region's market. The study extends the conventional Technology Acceptance Model (TAM) by incorporating perceived enjoyment, aesthetic appeal, healthology, and two fashion-related factors, such as fashion innovativeness and fashion involvement. Data representing 300 respondents were analyzed using the structural equation model (SEM). The results reveal that, among other predictors, attitude toward using has the strongest direct effect on behavioral intention to use smartwatches. Moreover, attitude toward using smartwatches is significantly influenced by perceived enjoyment, perceived usefulness, perceived ease of use, fashion innovativeness, and fashion involvement. The study further discusses some interesting theoretical contributions that would be important insights for future studies. The empirical findings of this study would benefit the manufacturers and marketers who are trying to enter or penetrate the market in the Asia-pacific region.

Keywords

References

  1. Abhishek, C. (2019). Smartphone market in Bangladesh Grew 45% YoY in Q1 2019-counterpoint research. Retrieved from https://www.counterpointresearch.com/smart phone-market-bangladesh-grew-45-yoy-q1-2019/. Accessed on 6 December 2019. 
  2. Adapa, A., Nah, F. F. H., Hall, R. H., Siau, K., and Smith, S. N. (2018). Factors influencing the adoption of smart wearable devices. International Journal of Human-Computer Interaction, 34(5), 399-409. doi: 10.1080/10447318.2017.1357902 
  3. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. doi: 10.1016/0749-5978(91)90020-T 
  4. Anderson, J. C., and Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423. doi: 10.1037/0033-2909.103.3.411 
  5. Bagozzi, R. P. (2007). The legacy of the technology acceptance model and a proposal for a paradigm shift. Journal of the Association for Information Systems, 8(4), 244-254. doi: 10.17705/1jais.00122 
  6. Barnard, M. (2002). Fashion as communication (2nd ed.). Routledge. 
  7. Bodine, K., and Gemperle, F. (2003). Effects of functio nality on perceived comfort of wearables. In Proceedings-International Symposium on Wearable Computers, ISWC. IEEE, 57-61. doi: 10.1109/ISWC.2003.1241394 
  8. Canhoto, A. I., and Arp, S. (2017). Exploring the factors that support adoption and sustained use of health and fitness wearables. Journal of Marketing Management, 33(1-2), 32-60. doi: 10.1080/0267257X.2016.1234505 
  9. Cecchinato, M. E., Cox, A. L., and Bird, J. (2015). Smartwatches: The good, the bad and the ugly? In Conference on Human Factors in Computing Systems-Proceedings. Association for Computing Machinery, 2133-2138. doi: 10.1145/2702613.2732837 
  10. Cheung, G. W., and Lau, R. S. (2008). Testing mediation and suppression effects of latent variables: Bootstrapping with structural equation models. Organizational Research Methods, 11(2), 296-325. doi: 10.1177/1094428107300343 
  11. Choi, J., and Kim, S. (2016). Is the smartwatch an IT product or a fashion product? A study on factors affecting the intention to use smartwatches. Computers in Human Behavior, 63, 777-786. doi: 10.1016/j.chb.2016.06.007 
  12. Chuah, S. H. W., Rauschnabel, P. A., Krey, N., Nguyen, B., Ramayah, T., and Lade, S. (2016). Wearable technologies: The role of usefulness and visibility in smartwatch adoption. Computers in Human Behav ior, 65, 276-284. doi: 10.1016/j.chb.2016.07.047 
  13. Claussen, J., Essling, C., and Kretschmer, T. (2015). When less can be more-Setting technology levels in complementary goods markets. Research Policy, 44(2), 328-339. doi: 10.1016/j.respol.2014.10.005 
  14. Cronan, T. P., and Al-Rafee, S. (2008). Factors that influence the intention to pirate software and media. Journal of Business Ethics, 78(4), 527-545. doi: 10.1007/s10551-007-9366-8 
  15. Curry, D. (2015). Apple watch has 10,000 apps: Bests Android wear, pebble. Digital Trends, Retrieved from https://www.digitaltrends.com/wearables/apple-watch-apps-comparison/. Accessed on 7 December 2019. 
  16. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. doi: 10.2307/249008 
  17. Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. doi: 10.1287/mnsc.35.8.982 
  18. Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111-1132. doi: 10.1111/j.1559-1816.1992.tb00945.x 
  19. Dehghani, M. (2018). Exploring the motivational factors on continuous usage intention of smartwatches among actual users. Behaviour and Information Technology, 37(2), 145-158. doi: 10.1080/0144929X.2018.1424246 
  20. Dehghani, M., and Dangelico, R. M. (2017). Smart wearable technologies: Current status and market orientation through a patent analysis. In Proceedings of the IEEE International Conference on Industrial Technology, 1570-1575. doi: 10.1109/ICIT.2017.7915602 
  21. Dehghani, M., Kim, K. J., and Dangelico, R. M. (2018). Will smartwatches last? Factors contributing to intention to keep using smart wearable technology. Telematics and Informatics, 35(2), 480-490. doi: 10.1016/j.tele.2018.01.007 
  22. Dhaka Tribune (2018). ADB: Bangladesh posts highest GDP growth since 1974 in FY18. Retrieved from https://www.dhakatribune.com/business/economy/2018/09/26/adb-projects-7-5-gdp-growth-in-bangladesh-in-fy19. Accessed on 6 December 2019. 
  23. Doll, W. J., Xia, W., and Torkzadeh, G. (1994). A confirmatory factor analysis of the end-user computing satisfaction instrument. MIS Quarterly: Management Information Systems, 18(4), 453-460. doi: 10.2307/249524 
  24. Dutot, V., Bhatiasevi, V., and Bellallahom, N. (2019). Applying the technology acceptance model in a three-countries study of smartwatch adoption. Journal of High Technology Management Research, 30(1), 1-14. doi: 10.1016/j.hitech.2019.02.001 
  25. Ferre, F. (1988). Philosophy of technology. Englewood Cliffs, NJ: Prentice Hall. 
  26. Fishbein, M., and Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Addison-Wesley Pub. Co. 
  27. Fornell, C., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-55. doi: 10.2307/3151312 
  28. Goldsmith, R. E., and Hofacker, C. F. (1991). Measuring consumer innovativeness. Journal of the Academy of Marketing Science, 19(3), 209-221. doi: 10.1007/BF02726497 
  29. Greenhalgh, T., Robert, G., MacFarlane, F., Bate, P., Kyriakidou, O., and Peacock, R. (2005). Storylines of research in diffusion of innovation: A meta-narrative approach to systematic review. Social Science and Medicine, 61(2), 417-430. doi: 10.1016/j.socscimed.2004.12.001 
  30. Hair, J. F., Black, B., Babin, B., Anderson, R. E., and Tatham, R. L. (2006). Multivariate data analysis (6th ed.). Upper Saddle River, N.J.: Pearson Prentice Hall. 
  31. Hair, J. F., Black, W. C., Babin, B. J., and Anderson, R. E. (2014). Multivariate data analysis (7th ed.). Edinburgh Gate, Essex: Pearson Education Limited. 
  32. Hein, D. W. E., and Rauschnabel, P. A. (2016). Augmented reality smart glasses and knowledge management: A conceptual framework for enterprise social networks. In A. Rossmann, G. Stei and M. Besch (eds.), Enterprise social networks (pp. 83-109). Springer Fachmedien Wiesbaden. doi: 10.1007/978-3-658-12652-0_5 
  33. Hong, J. C., Lin, P. H., and Hsieh, P. C. (2017). The effect of consumer innovativeness on perceived value and continuance intention to use smartwatch. Computers in Human Behavior, 67, 264-272. doi: 10.1016/j.chb.2016.11.001 
  34. Hourigan, S. R., and Bougoure, U. S. (2012). Towards a better understanding of fashion clothing involvement. Australasian Marketing Journal, 20(2), 127-135. doi: 10.1016/j.ausmj.2011.10.004 
  35. Hsiao, K. L., and Chen, C. C. (2018). What drives smartwatch purchase intention? Perspectives from hardware, software, design, and value. Telematics and Informatics, 35(1), 103-113. doi: 10.1016/j.tele.2017.10.002 
  36. Hsiao, K. (2017). What drives smartwatch adoption intention? Comparing Apple and non-Apple watches. Library Hi Tech, 35(1), 186-206. doi: 10.1108/LHT-09-2016-0105 
  37. Hsiao, K. L. (2013). Android smartphone adoption and intention to pay for mobile internet: Perspectives from software, hardware, design, and value. Library Hi Tech, 31(2), 216-235. doi: 10.1108/07378831311329022 
  38. Hu, L. T., and Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.  https://doi.org/10.1080/10705519909540118
  39. Jayanti, R. K., and Burns, A. C. (1998). The antecedents of preventive health care behavior: An empirical study. Journal of the Academy of Marketing Science, 26(1), 6-15. doi: 10.1177/0092070398261002 
  40. Jeong, S. C., Kim, S. H., Park, J. Y., and Choi, B. (2017). Domain-specific innovativeness and new product adoption: A case of wearable devices. Telematics and Informatics, 34(5), 399-412. doi: 10.1016/j.tele.2016.09.001 
  41. Joo, J., and Sang, Y. (2013). Exploring Koreans' smartphone usage: An integrated model of the technology acceptance model and uses and gratifications theory. Computers in Human Behavior, 29(6), 2512-2518. doi: 10.1016/j.chb.2013.06.002 
  42. Jung, Y., Kim, S., and Choi, B. (2016). Consumer valuation of the wearables: The case of smartwatches. Computers in Human Behavior, 63, 899-905. doi: 10.1016/j.chb.2016.06.040 
  43. Kalantari, M. (2017). Consumers' adoption of wearable technologies: Literature review, synthesis, and future research agenda. International Journal of Technology Marketing, 12(3), 274-307. doi: 10.1504/IJTMKT.2017.089665 
  44. Kendall, E. L., and Sproles, G. B. (1986). Learning styles among secondary vocational home economics students: A factor analytic test of experiential learning theory. Journal of Vocational Education Research, 11(3), 1-15. 
  45. Kim, K. J. (2016). Round or square? How screen shape affects utilitarian and hedonic motivations for smartwatch adoption. Cyberpsychology, Behavior, and Social Networking, 19(12), 733-739. doi: 10.1089/cyber.2016.0136 
  46. Kim, K. J., and Shin, D. H. (2015). An acceptance model for smart watches: Implications for the adoption of future wearable technology. Internet Research, 25(4), 527-541. doi: 10.1108/IntR-05-2014-0126 
  47. Lee, M. C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141. doi: 10.1016/j.elerap.2008.11.006 
  48. Lee, S. Y. (2014). Examining the factors that influence early adopters' smartphone adoption: The case of college students. Telematics and Informatics, 31(2), 308-318. doi: 10.1016/j.tele.2013.06.001 
  49. Lee, S. Y., and Lee, K. (2018). Factors that influence an individual's intention to adopt a wearable healthcare device: The case of a wearable fitness tracker. Technological Forecasting and Social Change, 129, 154-163. doi: 10.1016/j.techfore.2018.01.002 
  50. Li, H., Wu, J., Gao, Y., and Shi, Y. (2016). Examining individuals' adoption of healthcare wearable devices: An empirical study from privacy calculus perspective. International Journal of Medical Informatics, 88(555), 8-17. doi: 10.1016/j.ijmedinf.2015.12.010 
  51. Liebana-Cabanillas, F., Sanchez-Fernandez, J., and Munoz-Leiva, F. (2014). The moderating effect of experience in the adoption of mobile payment tools in Virtual Social Networks: The m-Payment Acceptance Model in Virtual Social Networks (MPAM-VSN). International Journal of Information Management, 34(2), 151-166. doi: 10.1016/j.ijinfomgt.2013.12.006 
  52. Lu, T. C., Fu, C. M., Ma, M. H. M., Fang, C. C., and Turner, A. M. (2016). Healthcare applications of smart watches: A systematic review. Applied Clinical Informatics, 7(3), 850-869. doi: 10.4338/ACI-2016-03-R-0042 
  53. Lunney, A., Cunningham, N. R., and Eastin, M. S. (2016). Wearable fitness technology: A structural investigation into acceptance and perceived fitness outcomes. Computers in Human Behavior, 65, 114-120. doi: 10.1016/j.chb.2016.08.007 
  54. MacCallum, R. C., and Hong, S. (1997). Power analysis in covariance structure modeling using GFI and AGFI. Multivariate Behavioral Research, 32(2), 193-210. doi: 10.1207/s15327906mbr3202_5 
  55. Mann, S. (2018). The encyclopedia of human-computer interaction (2nd ed.) 23. Wearable Computing, Retrieved from https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/wearable-computing. Accessed on 7 December 2019. 
  56. Mantymaki, M., and Salo, J. (2011). Teenagers in social virtual worlds: Continuous use and purchasing behavior in Habbo Hotel. Computers in Human Behavior, 27(6), 2088-2097. doi: 10.1016/j.chb.2011.06.003 
  57. Marakhimov, A., and Joo, J. (2017). Consumer adaptation and infusion of wearable devices for healthcare. Computers in Human Behavior, 76, 135-148. doi: 10.1016/j.chb.2017.07.016 
  58. March, S. T., and Smith, G. F. (1995). Design and natural science research on information technology. Decision Support Systems, 15(4), 251-266. doi: 10.1016/0167-9236(94)00041-2 
  59. Moar, J. (2018). Smart wearables research report. Smart Devices, Retrieved from https://www.juniperresearch.com/researchstore/smart-devices/consumer-wearables-market-survey-archive. Accessed on 7 December 2019. 
  60. Moon, J. W., and Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Informati on and Management, 38(4), 217-230. doi: 10.1016/S0378-7206(00)00061-6 
  61. Nam, J., Hamlin, R., Gam, H. J., Kang, J. H., Kim, J., Kumphai, P., Starr, C., and Richards, L. (2007). The fashion-conscious behaviours of mature female consumers. International Journal of Consumer Studies, 31(1), 102-108. doi: 10.1111/j.1470-6431.2006.00497.x 
  62. Nanda, P., Bos, J., Kramer, K. L., Hay, C., and Ignacz, J. (2008). Effect of smartphone aesthetic design on users' emotional reaction: An empirical study. TQM Journal, 20(4), 348-355. doi: 10.1108/17542730810881339 
  63. Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York, NY: McGraw-Hill. 
  64. Nwosu, A. C., Quinn, C., Samuels, J., Mason, S., and Payne, T. R. (2018). Wearable smartwatch technology to monitor symptoms in advanced illness. BMJ Supportive & Palliative Care, 8(2), 237. doi: 10.1136/bmjspcare-2017-001445 
  65. O'Cass, A. (2004). Fashion clothing consumption: Antecedents and consequences of fashion clothing involvement. European Journal of Marketing, 38(7), 869-882. doi: 10.1108/03090560410539294 
  66. O'Cass, A., and Choy, E. (2008). Studying Chinese generation Y consumers' involvement in fashion clothing and perceived brand status. Journal of Product and Brand Management, 17(5), 341-352. doi: 10.1108/10610420810896095 
  67. Omdia (2015). Smartwatch forecast 2015-2020: Apple's competitors will benefit if apple watch succeeds. IHS technology, Retrieved from https://technology.ihs.com/529966/smartwatch-forecast-2015-2020-app les-competitors-will-benefit-if-apple-watch-succeeds. Accessed on 7 December 2019. 
  68. Orion Market Research (2017) Global Smartwatch Market Research and Forecast 2017-2022. Retrieved from https://www.wiseguyreports.com/reports/2786819-global-smartwatch-market-research-and-forecast-2017-2022. Accessed on 7 December 2019. 
  69. Palak, Z. A. (2019, July 15). Digital Bangladesh-a story of transformation. Retrieved from https://www.daily-sun.com/post/407497/2019/07/15/Digital-Bangladesh--a-Story-of-Transformation. Accessed on 6 December 2019. 
  70. Park, C., and Jun, J. K. (2003). A cross-cultural comparison of Internet buying behavior: Effects of Internet usage, perceived risks, and innovativeness. International Marketing Review, 20(5), 534-553. doi: 10.1108/02651330310498771 
  71. Park, E., Baek, S., Ohm, J., and Chang, H. J. (2014). Determinants of player acceptance of mobile social network games: An application of extended technology acceptance model. Telematics and Informatics, 31(1), 3-15. doi: 10.1016/j.tele.2013.07.001 
  72. Park, H. J., Burns, L. D., and Rabolt, N. J. (2007). Fashion innovativeness, materialism, and attitude toward purchasing foreign fashion goods online across national borders: The moderating effect of internet innovativeness. Journal of Fashion Marketing and Management, 11(2), 201-214. doi: 10.1108/13612020710751383. 
  73. Park, Y., and Chen, J. V. (2007). Acceptance and adoption of the innovative use of smartphone. Industrial Management and Data Systems, 107(9), 1349-1365. doi: 10.1108/02635570710834009 
  74. Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101-134. doi: 10.2307/27751067 
  75. Perez, B. (2017). Smartwatch market hits record 21.1 million sales in 2016, as Apple pulls ahead of Samsung, Chinese brands. South China Morning Post, Retrieved from https://www.scmp.com/tech/article/2067481/smartwatch-market-hits-record-211-million-sales-2016-apple-pulls-ahead-samsung. Accessed on 7 December 2019. 
  76. Rahman, L. (2015). Digital Bangladesh: Dreams and reality. The Daily Star, Retrieved from https://www.thedailystar.net/supplements/24th-anniversary-the-daily-star-part-1/digital-bangladesh-dreams-andreality-73118. Accessed on 6 December 2019. 
  77. Rahman, S. U., Saleem, S., Akhtar, S., Ali, T., and Khan, M. A. (2014). Consumers' adoption of apparel fashion: the role of innovativeness, involvement, and social values. International Journal of Marketing Studies, 6(3), 49-64. doi: 10.5539/ijms.v6n3p49 
  78. Rauschnabel, P. A., Hein, D. W. E., He, J., Ro, Y. K., Rawashdeh, S., and Krulikowski, B. (2016). Fashion or technology? A fashnology perspective on the perception and adoption of augmented reality smart glasses. I-Com, 15(2), 179-194. doi: 10.1515/icom-2016-0021 
  79. Reeder, B., Cook, P. F., Meek, P. M., and Ozkaynak, M. (2017). Smart watch potential to support augmented cognition for health-related decision making. In Lecture Notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (pp. 372-382). Springer Verlag. doi: 10.1007/978-3-319-58628-1_29 
  80. Reeder, B., and David, A. (2016). Health at hand: A systematic review of smart watch uses for health and wellness. Journal of Biomedical Informatics, 63, 269-276. doi: 10.1016/j.jbi.2016.09.001 
  81. Rogers, E. (1962). Diffusion of innovations. New York: Free Press of Glencoe. 
  82. Rogers, E. M. (1995). Diffusion of innovations (3rd ed.). Free Press. 
  83. Schiffman, L. G., and Kanuk, L. (1983). Consumer Behaviour (2nd ed.). Engelwood Cliffs, NJ: Prentice Hall. 
  84. Seo, J. I., Hathcote, J. M., and Sweaney, A. L. (2001). Casualwear shopping behaviour of college men in Georgia, USA. Journal of Fashion Marketing and Management, 5(3), 208-222. doi: 10.1108/EUM0000000007288 
  85. Statista (2019a). Wearables-China. Statista Market Forecast, Retrieved from https://www.statista.com/outlook/319/117/wearables/china. Accessed on 7 December 2019. 
  86. Statista (2019b). Wearables-Bangladesh. Statista Market Forecast, Retrieved from https://www.statista.com/outlook/319/168/wearables/bangladesh. Accessed on 7 December 2019. 
  87. Summer, T. A., Belleau, B. D., and Xu, Y. (2006). Predicting purchase intention of a controversial luxury apparel product. Journal of Fashion Marketing and Management, 10(4), 405-419. doi: 10.1108/13612020610701947 
  88. Tabachnick, B. G., and Fidell, L. S. (2014). Using multivariate statistics (6th ed.). Edinburgh Gate, Essex: Pearson Education Limited. 
  89. Van der Heijden, H. (2003). Factors influencing the usage of websites: The case of a generic portal in the Netherlands. Information and Management, 40(6), 541-549. doi: 10.1016/S0378-7206(02)00079-4 
  90. Venkatesh, V., Thong, J. Y. L., and Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. doi: 10.2307/41410412 
  91. Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. doi: 10.2307/23011042 
  92. Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. doi: 10.1103/PhysRevB.57.R14040 
  93. Venkatesh, V., and Davis, F. D. (2000). Theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. doi: 10.1287/mnsc.46.2.186.11926 
  94. Workman, J. E. (2010). Fashion consumer groups, gender, and need for touch. Clothing and Textiles Research Journal, 28(2), 126-139. doi: 10.1177/0887302X09356323 
  95. Wu, I. L., Li, J. Y., and Fu, C. Y. (2011). The adoption of mobile healthcare by hospital's professionals: An integrative perspective. Decision Support Systems, 51(3), 587-596. doi: 10.1016/j.dss.2011.03.003 
  96. Wu, L. H., Wu, L. C., and Chang, S. C. (2016). Exploring consumers' intention to accept smartwatc h. Computers in Human Behavior, 64, 383-392. doi: 10.1016/j.chb.2016.07.005 
  97. Yang, H., Yu, J., Zo, H., and Choi, M. (2016). User acceptance of wearable devices: An extended perspective of perceived value. Telematics and Informatics, 33(2), 256-269. doi: 10.1016/j.tele.2015.08.007 
  98. Zhang, B., and Kim, J. H. (2013). Luxury fashion consumption in China: Factors affecting attitude and purchase intent. Journal of Retailing and Consumer Services, 20(1), 68-79. doi: 10.1016/j.jretconser.2012.10.007