참고문헌
- 김다예, 이영인, "Word2Vec을 활용한 뉴스 기반 주가지수 방향성 예측용 감성 사전 구축", 한국빅데이터학회지, 제3권, 제1호, 2018, pp. 13-20.
- 남길임, 조은경, 한국어 텍스트 감성분석, 커뮤니케이션북스, 2017.
- 박재수, 이재수, "아파트 매매가격과 부동산 온라인 뉴스의 교차상관관계와 인과관계 분석: 온라인 뉴스 기사의 비정형 빅데이터를 활용한 감성분석 기법의 적용", Journal of Korea Planning Association, 제54권, 제1호, 2019, pp. 131-147, Available at DOI: 10.17208/jkpa.2019.02.54.1.131.
- 박현정, 송민채, 신경식, "CNN을 적용한 한국어 상품평 감성분석: 형태소 임베딩을 중심으로", 지능정보연구, 제24권, 제2호, 2018, pp. 59-83, Available at DOI: 10.13088/jiis.2018.24.2.059.
- 이영준, 윤보현, "토픽모델링과 감성분석에 기반한 금통위 의사록 분석", Journal of The Korean Data Analysis Society, 제21권, 제2호, 2019, pp. 889-900. https://doi.org/10.37727/jkdas.2019.21.2.889
- 정민지, 이유림, 유채민, 김지원, 정재은, "텍스트 마이닝 기법을 이용한 모바일 간편결제 서비스에 대한 소비자 반응 분석: 삼성페이를 중심으로", 디지털융복합연구, 제17권, 제1호, 2019, pp. 9-27, Available at DOI: 10.14400/JDC.2019.17.1.009.
- 정풀잎, 안현철, 곽기영, "텍스트 마이닝과 소셜 네트워크 분석을 이용한 스마트폰 디자인의 핵심속성 및 가치 식별", 대한경영학회지, 제32권, 제1호, 2019, pp. 27-47, Available at DOI: 10.18032/kaaba.2019.32.1.27.
- Abberley, L., N. Gould, K. Crockett, and J. Cheng, "Modelling road congestion using ontologies for big data analytics in smart cities", International Smart Cities Conference, 2017, pp. 14-17, Available at DOI: 10.1109/ISC2.2017.8090795.
- Ali, F., D. Kwak, P. Khan, S. El-Sappagh, A. Ali, S. Ullah, K. H. Kim, and K. S. Kwak, "Transportation sentiment analysis using word embedding and ontology-based topic modeling", Knowledge-Based Systems, Vol.174, 2019, pp. 27-42, Available at DOI: 10.1016/j.knosys.2019.02.033.
- Almars, A., X. Li, and X. Zhao, "Modelling user attitudes using hierarchical sentiment-topic model", Data & Knowledge Engineering, Vol.119, 2019, pp. 139-149, Available at DOI: 10.1016/j.datak.2019.01.005.
- Alqaryouti, O., N. Siyam, A. A. Monem, and K. Shaalan, "Aspect-based sentiment analysis using smart government review data", Applied Computing and Informatics, 2019 Online, Available at DOI: 10.1016/j.aci.2019.11.003.
- Celardo, L. and M. G. Everett, "Network text analysis: A two-way classification approach", International Journal of Information Management, 2019 pp. 1-8, Available at DOI: 10.1016/j.ijinfomgt.2019.09.005.
- Chen, F. and Y. Huang, "Knowledge-enhanced neural networks for sentiment analysis of Chinese reviews", Neurocomputing, Vol.368, 2019, pp. 51-58, Available at DOI: 10.1016/j.neucom.2019.08.054.
- Das, S., X. Sun, and A. Dutta, "Text mining and topic modeling of compendiums of papers from transportation research board annual meetings", Transportation Research Record, Vol.2552, No.1, 2016, pp. 48-56, Available at DOI: 10.3141/2552-07.
- Furnkranz, J., E. Hullermeier, E. L. Mencia, and K. Brinker, "Multilabel classification via calibrated label ranking", Machine Learning, Vol.73, No.2, 2008, pp. 133-153. https://doi.org/10.1007/s10994-008-5064-8
- Garcia-Pablos, A., M. Cuadros, and G. Rigau, "W2VLDA: almost unsupervised system for aspect based sentiment analysis", Expert Systems with Applications, Vol.91, 2018, pp. 127-137, Available at DOI: 10.1016/j.eswa.2017.08.049.
- Giatsoglou, M., M. G. Vozalis, K. Diamantaras, A. Vakali, G. Sarigiannidis, and K. C. Chatzisavvas, "Sentiment analysis leveraging emotions and word embeddings", Expert Systems with Applications, Vol.69, 2017, pp. 214-224, Available at DOI: 10.1016/j.eswa.2016.10.043.
- Huang, J., G. Li, S. Wang, Z. Xue, and Q. Huang, "Multi-label classification by exploiting local positive and negative pairwise label correlation", Neurocomputing, Vol.257, 2017, pp. 164-174, Available at DOI: 10.1016/j.neucom.2016.12.073.
- Hullermeier, E., J. Furnkranz, W. Cheng, and K. Brinker, "Label ranking by learning pairwise preferences", Artificial Intelligence, Vol.172, No.16, 2008, pp. 1897-1916, Available at DOI: 10.1016/j.artint.2008.08.002.
- Jena, R., "An empirical case study on Indian consumers' sentiment towards electric vehicles: A big data analytics approach", Industrial Marketing Management, 2020, pp. 1-12, Available at DOI: 10.1016/j.indmarman.2019.12.012.
- Jha, V., R. Savitha, P. D. Shenoy, K. R. Venugopal, and A. K. Sangaiah, "A novel sentiment aware dictionary for multi-domain sentiment classification", Computers & Electrical Engineering, Vol.69, 2018, pp. 585-597, Available at DOI: 10.1016/j.compeleceng.2017.10.015.
- Khan, A. U. R., M. Khan, and M. B. Khan, "Naive multi-label classification of YouTube comments using comparative opinion mining", Procedia Computer Science, Vol.82, 2016, pp. 57-64, Available at DOI: 10.1016/j.procs.2016.04.009.
- Krouska, A., C. Troussas, and M. Virvou, "Comparative evaluation of algorithms for sentiment analysis over social networking services", Journal of Universal Computer Science, Vol.23, No.8, 2017, pp. 755-768.
- Lawani, A., M. R. Reed, T. Mark, and Y. Zheng, "Reviews and price on online platforms: Evidence from sentiment analysis of Airbnb reviews in Boston", Regional Science and Urban Economics, Vol.75, 2019, pp. 22-34, Available at DOI: 10.1016/j.regsciurbeco.2018.11.003.
- Le, H., J. Lee, and H. K. Lee, "Purchase process aspect-based opinion mining: An application for online shopping mall", The Journal of Internet Electronic Commerce Research, Vol.15, No.2, 2015, pp. 15-28.
- Lee, J. and D. W. Kim, "SCLS: Multi-label feature selection based on scalable criterion for large label set", Pattern Recognition, Vol.66, 2017, pp. 342-352, Available at DOI: 10.1016/j.patcog.2017.01.014.
- Lee, S., J. H. Lee, S. H. Jung, and J. Park, "The role of entropy of review text sentiments on online WOM and movie box office sales", Electronic Commerce Research and Applications, Vol.22, 2017, pp. 42-52, Available at DOI: 10.1016/j.elerap.2017.03.001.
- Lee, S. H., J. Cui, and J. W. Kim, "Sentiment analysis on movie review through building modified sentiment dictionary by movie genre", Journal of Intelligence and Information Systems, Vol.22, No.2, 2016, pp. 97-113, Available at DOI: 10.13088/jiis.2016.22.2.097.
- Li, Y., C. Shi, H. Zhao, F. Zhuang, and B. Wu, "Aspect mining with rating bias", European Conference on Machine Learning and Knowledge Discovery in Databases, 2016, pp. 458-474.
- Liu, H., H. Motoda, R. Setiono, and Z. Zhao, "Feature selection: An ever evolving frontier in data mining", In Feature Selection in Data Mining, 2010, pp. 4-13.
- Liu, X., "Analyzing the impact of user-generated content on B2B Firms' stock performance: Big data analysis with machine learning methods", Industrial Marketing Management, 2019, pp. 1-10, Available at DOI: 10.1016/j.indmarman.2019.02.021.
- Liuc, H. and H. Motoda, Feature Selection for Knowledge Discovery and Data Mining, Springer Science & Business Media, 2012.
- Marcheggiani, D., O. Tackstrom, A. Esuli, and F. Sebastiani, "Hierarchical multi-label conditional random fields for aspect-oriented opinion mining", European Conference on Information Retrieval, 2014, pp. 273-285.
- Mikolov, T., K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space", arXiv preprint arXiv:1301.3781, 2013.
- Ngo-Ye, T. L. and A. P. Sinha, "The influence of reviewer engagement characteristics on online review helpfulness: A text regression model", Decision Support Systems, Vol.61, 2014, pp.47-58, Available at DOI: 10.1016/j.dss.2014.01.011.
- Pereira, R. B., A. Plastino, B. Zadrozny, and L. H. Merschmann, "Correlation analysis of performance measures for multi-label classification", Information Processing & Management, Vol.54, No.3, 2018, pp. 359-369, Available at DOI: 10.1016/j.ipm.2018.01.002.
- Qiu, G., B. Liu, J. Bu, and C. Chen, "Opinion word expansion and target extraction through double propagation", Computational Linguistics, Vol.37, No.1, 2011, pp. 9-27, Available at DOI: 10.1162/coli_a_00034.
- Rathan, M., V. R. Hulipalled, K. R. Venugopal, and L. M. Patnaik, "Consumer insight mining: Aspect based twitter opinion mining of mobile phone reviews", Applied Soft Computing, Vol.68, 2018, pp. 765-773, Available at DOI: 10.1016/j.asoc.2017.07.056.
- Read, J., B. Pfahringer, G. Holmes, and E. Frank, "Classifier chains for multi-label classification", Machine Learning and Knowledge Discovery in Databases, 2009, pp. 254-269.
- Read, J., B. Pfahringer, G. Holmes, and E. Frank, "Classifier chains for multi-label classification", Machine Learning, Vol.85, No.3, 2011, pp. 333-359. https://doi.org/10.1007/s10994-011-5256-5
- Santosh, D. T., K. S. Babu, S. D. V. Prasad, and A. Vivekananda, "Opinion mining of online product reviews from traditional LDA topic clusters using feature ontology tree and sentiwordnet", International Journal Education and Management Engineering, Vol.6, 2016, pp. 34-44, Available at DOI: 10.5815/ijeme.2016.06.04.
- Shibuya, Y. and H. Tanaka, "Public sentiment and demand for used cars after a large-scale disaster: Social media sentiment analysis with Facebook pages", Social Web in Emergency and Disaster Management, 2018.
- Spolaor, N., E. A. Cherman, M. C. Monard, and H. D. Lee, "ReliefF for multi-label feature selection", IEEE Brazilian Conference on Intelligent Systems, 2013, pp. 6-11.
- Tan, X., Y. Cai, J. Xu, H. F. Leung, W. Chen, and Q. Li, "Improving aspect-based sentiment analysis via aligning aspect embedding", Neurocomputing, 2019, Available at DOI: 10.1016/j.neucom.2019.12.035.
- Wang, G., J. Sun, J. Ma, K. Xu, and J. Gu, "Sentiment classification: The contribution of ensemble learning", Decision Support Systems, Vol.57, 2014, pp. 77-93, Available at DOI: 10.1016/j.dss.2013.08.002.
- Yadollahi, A., A. G. Shahraki, and O. R. Zaiane, "Current state of text sentiment analysis from opinion to emotion mining", Association for Computing Machinery Computing Surveys, Vol.50, No.2, 2017, pp. 25-58, Available at DOI: 10.1145/3057270.
- Yang, C., H. Zhang, B. Jiang, and K. Li, "Aspect-based sentiment analysis with alternating coattention networks", Information Processing & Management, Vol.56, No.3, 2019, pp. 463-478, Available at DOI: 10.1016/j.ipm.2018.12.004.
- Zhang, M. L. and Z. H. Zhou, "ML-KNN: A lazy learning approach to multi-label learning", Pattern Recognition, Vol.40, No.7, 2007, pp. 2038-2048, Available at DOI: 10.1016/j.patcog.2006.12.019.
- Zhang, M. L. and Z. H. Zhou, "A review on multi-label learning algorithms", IEEE Transactions on Knowledge and Data Engineering, Vol.26, No.8, 2013, pp. 1819-1837, Available at DOI: 10.1109/TKDE.2013.39.
- Zhou, Z. H., M. L. Zhang, S. J. Huang, and Y. F. Li, "Multi-instance multi-label learning", Artificial Intelligence, Vol.176, No.1, 2012, pp. 2291-2320. https://doi.org/10.1016/j.artint.2011.10.002