DOI QR코드

DOI QR Code

march5 Governs the Convergence and Extension Movement for Organization of the Telencephalon and Diencephalon in Zebrafish Embryos

  • Jung, Jangham (Department of Life Science, BK21 Plus Program, Graduate School, Chungnam National University) ;
  • Choi, Issac (Department of Life Science, BK21 Plus Program, Graduate School, Chungnam National University) ;
  • Ro, Hyunju (Department of Life Science, BK21 Plus Program, Graduate School, Chungnam National University) ;
  • Huh, Tae-Lin (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Choe, Joonho (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Rhee, Myungchull (Department of Life Science, BK21 Plus Program, Graduate School, Chungnam National University)
  • 투고 : 2019.09.19
  • 심사 : 2019.12.04
  • 발행 : 2020.01.31

초록

MARCH5 is a RING finger E3 ligase involved in mitochondrial integrity, cellular protein homeostasis, and the regulation of mitochondrial fusion and fission. To determine the function of MARCH5 during development, we assessed transcript expression in zebrafish embryos. We found that march5 transcripts were of maternal origin and evenly distributed at the 1-cell stage, except for the mid-blastula transition, with expression predominantly in the developing central nervous system at later stages of embryogenesis. Overexpression of march5 impaired convergent extension movement during gastrulation, resulting in reduced patterning along the dorsoventral axis and alterations in the ventral cell types. Overexpression and knockdown of march5 disrupted the organization of the developing telencephalon and diencephalon. Lastly, we found that the transcription of march5 was tightly regulated by the transcriptional regulators CHOP, C/EBPα, Staf, Znf143a, and Znf76. These results demonstrate the essential role of March5 in the development of zebrafish embryos.

키워드

참고문헌

  1. Barth, K.A., Kishimoto, Y., Rohr, K.B., Seydler, C., Schulte-Merker, S., and Wilson, S.W. (1999). Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development 126, 4977-4987. https://doi.org/10.1242/dev.126.22.4977
  2. Carlson, B.A., Schweizer, U., Perella, C., Shrimali, R.K., Feigenbaum, L., Shen, L., Speransky, S., Floss, T., Jeong, S.J., and Watts, J. (2009). The selenocysteine tRNA STAF-binding region is essential for adequate selenocysteine tRNA status, selenoprotein expression and early age survival of mice. Biochem. J. 418, 61-71. https://doi.org/10.1042/BJ20081304
  3. Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E., and Chan, D.C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189-200. https://doi.org/10.1083/jcb.200211046
  4. Cherok, E., Xu, S., Li, S., Das, S., Meltzer, W.A., Zalzman, M., Wang, C., and Karbowski, M. (2017). Novel regulatory roles of Mff and Drp1 in E3 ubiquitin ligase MARCH5-dependent degradation of MiD49 and Mcl1 and control of mitochondrial dynamics. Mol. Biol. Cell 28, 396-410. https://doi.org/10.1091/mbc.e16-04-0208
  5. Chuang, J.C., Mathers, P.H., and Raymond, P.A. (1999). Expression of three Rx homeobox genes in embryonic and adult zebrafish. Mech. Dev. 84, 195-198. https://doi.org/10.1016/S0925-4773(99)00077-5
  6. D'Amico, L.A. and Cooper, M.S. (1997). Spatially distinct domains of cell behavior in the zebrafish organizer region. Biochem. Cell Biol. 75, 563-577. https://doi.org/10.1139/o97-074
  7. De Brito, O.M. and Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605-610. https://doi.org/10.1038/nature07534
  8. Fisher, S. and Halpern, M.E. (1999). Patterning the zebrafish axial skeleton requires early chordin function. Nat. Genet. 23, 442-446. https://doi.org/10.1038/70557
  9. Fox, M.D. and Bruce, A.E. (2009). Short-and long-range functions of Goosecoid in zebrafish axis formation are independent of Chordin, Noggin 1 and Follistatin-like 1b. Development 136, 1675-1685. https://doi.org/10.1242/dev.031161
  10. Horndasch, M., Lienkamp, S., Springer, E., Schmitt, A., Pavenstädt, H., Walz, G., and Gloy, J. (2006). The C/EBP homologous protein CHOP (GADD153) is an inhibitor of Wnt/TCF signals. Oncogene 25, 3397-3407. https://doi.org/10.1038/sj.onc.1209380
  11. Jung, J., Udhaya Kumar, S., Choi, I., Huh, T.L., and Rhee, M. (2019). Znf76 is associated with development of the eyes, midbrain, MHB, and hindbrain in zebrafish embryos. Anim. Cells Syst. 23, 26-31. https://doi.org/10.1080/19768354.2018.1557744
  12. Kim, E.J., Ro, H., Huh, T.L., Lee, C.J., Choi, J., and Rhee, M. (2008). A novel Kinesin‐like protein, Surhe is associated with dorsalization in the zebrafish embryos. Anim. Cells Syst. 12, 219-230. https://doi.org/10.1080/19768354.2008.9647176
  13. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310. https://doi.org/10.1002/aja.1002030302
  14. Kimmel, C.B., Warga, R.M., and Schilling, T.F. (1990). Origin and organization of the zebrafish fate map. Development 108, 581-594. https://doi.org/10.1242/dev.108.4.581
  15. Kishimoto, Y., Lee, K.H., Zon, L., Hammerschmidt, M., and Schulte-Merker, S. (1997). The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124, 4457-4466. https://doi.org/10.1242/dev.124.22.4457
  16. Kumar, A., Anuppalle, M., Maddirevula, S., Huh, T.L., Choe, J., and Rhee, M. (2019). Peli1b governs the brain patterning via ERK signaling pathways in zebrafish embryos. Gene 694, 1-6. https://doi.org/10.1016/j.gene.2018.12.078
  17. Kumar, A., Huh, T.L., Choe, J., and Rhee, M. (2017). Rnf152 is essential for NeuroD expression and Delta-notch signaling in the zebrafish embryos. Mol. Cells 40, 945. https://doi.org/10.14348/MOLCELLS.2017.0216
  18. Lackner, L.L., Horner, J.S., and Nunnari, J. (2009). Mechanistic analysis of a dynamin effector. Science 325, 874-877. https://doi.org/10.1126/science.1176921
  19. Mathers, P., Grinberg, A., Mahon, K., and Jamrich, M. (1997). The Rx homeobox gene is essential for vertebrate eye development. Nature 387, 603-607. https://doi.org/10.1038/42475
  20. Maytin, E.V., Ubeda, M., Lin, J.C., and Habener, J.F. (2001). Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and-independent mechanisms. Exp. Cell Res. 267, 193-204. https://doi.org/10.1006/excr.2001.5248
  21. Mears, J.A., Lackner, L.L., Fang, S., Ingerman, E., Nunnari, J., and Hinshaw, J.E. (2011). Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 18, 20-26. https://doi.org/10.1038/nsmb.1949
  22. Morita, T., Nitta, H., Kiyama, Y., Mori, H., and Mishina, M. (1995). Differential expression of two zebrafish emx homeoprotein mRNAs in the developing brain. Neurosci. Lett. 198, 131-134. https://doi.org/10.1016/0304-3940(95)11988-9
  23. Myslinski, E., Krol, A., and Carbon, P. (1992). Optimal tRNA (Ser) Sec gene activity requires an upstream SPH motif. Nucleic Acids Res. 20, 203-209. https://doi.org/10.1093/nar/20.2.203
  24. Myslinski, E., Krol, A., and Carbon, P. (1998). ZNF76 and ZNF143 are two human homologs of the transcriptional activator Staf. J. Biol. Chem. 273, 21998-22006. https://doi.org/10.1074/jbc.273.34.21998
  25. Nagashima, S., Tokuyama, T., Yonashiro, R., Inatome, R., and Yanagi, S. (2014). Roles of mitochondrial ubiquitin ligase MITOL/MARCH5 in mitochondrial dynamics and diseases. J. Biochem. 155, 273-279. https://doi.org/10.1093/jb/mvu016
  26. Nakamura, N., Kimura, Y., Tokuda, M., Honda, S., and Hirose, S. (2006). MARCH-V is a novel mitofusin 2-and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 7, 1019-1022. https://doi.org/10.1038/sj.embor.7400790
  27. Niehrs, C. (2004). Regionally specific induction by the Spemann-Mangold organizer. Nat. Rev. Genet. 5, 425-434. https://doi.org/10.1038/nrg1347
  28. Oxtoby, E. and Jowett, T. (1993). Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res. 21, 1087-1095. https://doi.org/10.1093/nar/21.5.1087
  29. Palmer, C.S., Osellame, L.D., Laine, D., Koutsopoulos, O.S., Frazier, A.E., and Ryan, M.T. (2011). MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 12, 565-573. https://doi.org/10.1038/embor.2011.54
  30. Park, Y.Y. and Cho, H. (2012). Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5. Cell Div. 7, 25. https://doi.org/10.1186/1747-1028-7-25
  31. Park, Y.Y., Lee, S., Karbowski, M., Neutzner, A., Youle, R.J., and Cho, H. (2010). Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 123, 619-626. https://doi.org/10.1242/jcs.061481
  32. Ragoussis, J., Senger, G., Mockridge, I., Sanseau, P., Ruddy, S., Dudley, K., Sheer, D., and Trowsdale, J. (1992). A testis-expressed Zn finger gene (ZNF76) in human 6p21. 3 centromeric to the MHC is closely linked to the human homolog of the t-complex gene tcp-11. Genomics 14, 673-679. https://doi.org/10.1016/S0888-7543(05)80167-3
  33. Ramel, M.C., Buckles, G.R., Baker, K.D., and Lekven, A.C. (2005). WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation. Dev. Biol. 287, 237-248. https://doi.org/10.1016/j.ydbio.2005.08.012
  34. Ramel, M.C. and Lekven, A.C. (2004). Repression of the vertebrate organizer by Wnt8 is mediated by Vent and Vox. Development 131, 3991-4000. https://doi.org/10.1242/dev.01277
  35. Reifers, F., Bohli, H., Walsh, E.C., Crossley, P.H., Stainier, D., and Brand, M. (1998). Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125, 2381-2395. https://doi.org/10.1242/dev.125.13.2381
  36. Ro, H., Soun, K., Kim, E.J., and Rhee, M. (2004). Novel vector systems optimized for injecting in vitro-synthesized mRNA into zebrafish embryos. Mol. Cells 17, 373-376.
  37. Ron, D. and Habener, J.F. (1992). CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 6, 439-453. https://doi.org/10.1101/gad.6.3.439
  38. Schaub, M., Myslinski, E., Schuster, C., Krol, A., and Carbon, P. (1997). Staf, a promiscuous activator for enhanced transcription by RNA polymerases II and III. EMBO J. 16, 173-181. https://doi.org/10.1093/emboj/16.1.173
  39. Schulte-Merker, S., Hammerschmidt, M., Beuchle, D., Cho, K., De Robertis, E., and Nusslein-Volhard, C. (1994). Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos. Development 120, 843-852. https://doi.org/10.1242/dev.120.4.843
  40. Schuster, C., Myslinski, E., Krol, A., and Carbon, P. (1995). Staf, a novel zinc finger protein that activates the RNA polymerase III promoter of the selenocysteine tRNA gene. EMBO J. 14, 3777-3787. https://doi.org/10.1002/j.1460-2075.1995.tb00047.x
  41. Sepich, D.S., Calmelet, C., Kiskowski, M., and Solnica-Krezel, L. (2005). Initiation of convergence and extension movements of lateral mesoderm during zebrafish gastrulation. Dev. Dyn. 234, 279-292. https://doi.org/10.1002/dvdy.20507
  42. Solnica-Krezel, L. (2005). Conserved patterns of cell movements during vertebrate gastrulation. Curr. Biol. 15, R213-R228. https://doi.org/10.1016/j.cub.2005.03.016
  43. Sugiura, A., Nagashima, S., Tokuyama, T., Amo, T., Matsuki, Y., Ishido, S., Kudo, Y., McBride, H.M., Fukuda, T., and Matsushita, N. (2013). MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol. Cell 51, 20-34. https://doi.org/10.1016/j.molcel.2013.04.023
  44. Szabadkai, G., Bianchi, K., Várnai, P., De Stefani, D., Wieckowski, M.R., Cavagna, D., Nagy, A.I., Balla, T., and Rizzuto, R. (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901-911. https://doi.org/10.1083/jcb.200608073
  45. Talukder, A.H., Wang, R.A., and Kumar, R. (2002). Expression and transactivating functions of the bZIP transcription factor GADD153 in mammary epithelial cells. Oncogene 21, 4289-4300. https://doi.org/10.1038/sj.onc.1205529
  46. Thisse, C., Thisse, B., Schilling, T., and Postlethwait, J. (1993). Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 1203-1215. https://doi.org/10.1242/dev.119.4.1203
  47. Tommerup, N. and Vissing, H. (1995). Isolation and fine mapping of 16 novel human zinc finger-encoding cDNAs identify putative candidate genes for developmental and malignant disorders. Genomics 27, 259-264. https://doi.org/10.1006/geno.1995.1040
  48. Trinkaus, J. (1993). The yolk syncytial layer of Fundulus: its origin and history and its significance for early embryogenesis. J. Exp. Zool. 265, 258-284. https://doi.org/10.1002/jez.1402650308
  49. Ubeda, M., Wang, X.Z., Zinszner, H., Wu, I., Habener, J.F., and Ron, D. (1996). Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element. Mol. Cell. Biol. 16, 1479-1489. https://doi.org/10.1128/MCB.16.4.1479
  50. Viktorin, G., Chiuchitu, C., Rissler, M., Varga, Z.M., and Westerfield, M. (2009). Emx3 is required for the differentiation of dorsal telencephalic neurons. Dev. Dyn. 238, 1984-1998. https://doi.org/10.1002/dvdy.22031
  51. Wang, X.Z., Lawson, B., Brewer, J.W., Zinszner, H., Sanjay, A., Mi, L.J., Boorstein, R., Kreibich, G., Hendershot, L.M., and Ron, D. (1996). Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol. Cell. Biol. 16, 4273-4280. https://doi.org/10.1128/MCB.16.8.4273
  52. Westerfield, M. (2000). The zebrafish book: a guide for the laboratory use of zebrafish. http://zfin.org/zf_info/zfbook/zfbk.html.
  53. Wu, X., Wu, F.H., Wu, Q., Zhang, S., Chen, S., and Sima, M. (2017). Phylogenetic and molecular evolutionary analysis of Mitophagy receptors under hypoxic conditions. Front. Physiol. 8, 539. https://doi.org/10.3389/fphys.2017.00539
  54. Xu, S., Cherok, E., Das, S., Li, S., Roelofs, B.A., Ge, S.X., Polster, B.M., Boyman, L., Lederer, W.J., and Wang, C. (2016). Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol. Biol. Cell 27, 349-359. https://doi.org/10.1091/mbc.e15-09-0678
  55. Yonashiro, R., Ishido, S., Kyo, S., Fukuda, T., Goto, E., Matsuki, Y., Ohmura-Hoshino, M., Sada, K., Hotta, H., and Yamamura, H. (2006). A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 25, 3618-3626. https://doi.org/10.1038/sj.emboj.7601249
  56. Yonashiro, R., Kimijima, Y., Shimura, T., Kawaguchi, K., Fukuda, T., Inatome, R., and Yanagi, S. (2012). Mitochondrial ubiquitin ligase MITOL blocks S-nitrosylated MAP1B-light chain 1-mediated mitochondrial dysfunction and neuronal cell death. Proc. Natl. Acad. Sci. U. S. A. 109, 2382-2387. https://doi.org/10.1073/pnas.1114985109
  57. Zhao, J., Liu, T., Jin, S., Wang, X., Qu, M., Uhlen, P., Tomilin, N., Shupliakov, O., Lendahl, U., and Nister, M. (2011). Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO J. 30, 2762-2778. https://doi.org/10.1038/emboj.2011.198
  58. Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R.T., Remotti, H., Stevens, J.L., and Ron, D. (1998). CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982-995. https://doi.org/10.1101/gad.12.7.982