DOI QR코드

DOI QR Code

Mitochondrial Ca2+ Uptake Relieves Palmitate-Induced Cytosolic Ca2+ Overload in MIN6 Cells

  • Ly, Luong Dai (Department of Physiology, Yonsei University Wonju College of Medicine) ;
  • Ly, Dat Da (Department of Physiology, Yonsei University Wonju College of Medicine) ;
  • Nguyen, Nhung Thi (Department of Physiology, Yonsei University Wonju College of Medicine) ;
  • Kim, Ji-Hee (Mitohormesis Research Center, Yonsei University Wonju College of Medicine) ;
  • Yoo, Heesuk (National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Chung, Jongkyeong (National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Lee, Myung-Shik (Severance Biomedical Science Institute, Yonsei University College of Medicine) ;
  • Cha, Seung-Kuy (Department of Physiology, Yonsei University Wonju College of Medicine) ;
  • Park, Kyu-Sang (Department of Physiology, Yonsei University Wonju College of Medicine)
  • 투고 : 2019.09.27
  • 심사 : 2019.12.03
  • 발행 : 2020.01.31

초록

Saturated fatty acids contribute to β-cell dysfunction in the onset of type 2 diabetes mellitus. Cellular responses to lipotoxicity include oxidative stress, endoplasmic reticulum (ER) stress, and blockage of autophagy. Palmitate induces ER Ca2+ depletion followed by notable store-operated Ca2+ entry. Subsequent elevation of cytosolic Ca2+ can activate undesirable signaling pathways culminating in cell death. Mitochondrial Ca2+ uniporter (MCU) is the major route for Ca2+ uptake into the matrix and couples metabolism with insulin secretion. However, it has been unclear whether mitochondrial Ca2+ uptake plays a protective role or contributes to lipotoxicity. Here, we observed palmitate upregulated MCU protein expression in a mouse clonal β-cell, MIN6, under normal glucose, but not high glucose medium. Palmitate elevated baseline cytosolic Ca2+ concentration ([Ca2+]i) and reduced depolarization-triggered Ca2+ influx likely due to the inactivation of voltage-gated Ca2+ channels (VGCCs). Targeted reduction of MCU expression using RNA interference abolished mitochondrial superoxide production but exacerbated palmitate-induced [Ca2+]i overload. Consequently, MCU knockdown aggravated blockage of autophagic degradation. In contrast, co-treatment with verapamil, a VGCC inhibitor, prevented palmitate-induced basal [Ca2+]i elevation and defective [Ca2+]i transients. Extracellular Ca2+ chelation as well as VGCC inhibitors effectively rescued autophagy defects and cytotoxicity. These observations suggest enhanced mitochondrial Ca2+ uptake via MCU upregulation is a mechanism by which pancreatic β-cells are able to alleviate cytosolic Ca2+ overload and its detrimental consequences.

키워드

참고문헌

  1. Arruda, A.P. and Hotamisligil, G.S. (2015). Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab. 22, 381-397. https://doi.org/10.1016/j.cmet.2015.06.010
  2. Back, S.H. and Kaufman, R.J. (2012). Endoplasmic reticulum stress and type 2 diabetes. Annu. Rev. Biochem. 81, 767-793. https://doi.org/10.1146/annurev-biochem-072909-095555
  3. Carafoli, E. (2002). Calcium signaling: a tale for all seasons. Proc. Natl. Acad. Sci. U. S. A. 99, 1115-1122. https://doi.org/10.1073/pnas.032427999
  4. Charles, M.A., Eschwege, E., Thibult, N., Claude, J.R., Warnet, J.M., Rosselin, G.E., Girard, J., and Balkau, B. (1997). The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: results of the Paris Prospective Study. Diabetologia 40, 1101-1106. https://doi.org/10.1007/s001250050793
  5. Choi, S., Quan, X., Bang, S., Yoo, H., Kim, J., Park, J., Park, K.S., and Chung, J. (2017). Mitochondrial calcium uniporter in Drosophila transfers calcium between the endoplasmic reticulum and mitochondria in oxidative stress-induced cell death. J. Biol. Chem. 292, 14473-14485. https://doi.org/10.1074/jbc.M116.765578
  6. Choi, S.E., Kim, H.E., Shin, H.C., Jang, H.J., Lee, K.W., Kim, Y., Kang, S.S., Chun, J., and Kang, Y. (2007). Involvement of $Ca^{2+}$-mediated apoptotic signals in palmitate-induced MIN6N8a beta cell death. Mol. Cell. Endocrinol. 272, 50-62. https://doi.org/10.1016/j.mce.2007.04.004
  7. Cnop, M., Ladriere, L., Igoillo-Esteve, M., Moura, R.F., and Cunha, D.A. (2010). Causes and cures for endoplasmic reticulum stress in lipotoxic beta-cell dysfunction. Diabetes Obes. Metab. 12 Suppl 2, 76-82.
  8. Cunha, D.A., Hekerman, P., Ladriere, L., Bazarra-Castro, A., Ortis, F., Wakeham, M.C., Moore, F., Rasschaert, J., Cardozo, A.K., Bellomo, E., et al. (2008). Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J. Cell Sci. 121, 2308-2318. https://doi.org/10.1242/jcs.026062
  9. da Cunha, F.M., Torelli, N.Q., and Kowaltowski, A.J. (2015). Mitochondrial retrograde signaling: triggers, pathways, and outcomes. Oxid. Med. Cell. Longev. 2015, 482582.
  10. De Stefani, D., Patron, M., and Rizzuto, R. (2015). Structure and function of the mitochondrial calcium uniporter complex. Biochim. Biophys. Acta 1853, 2006-2011. https://doi.org/10.1016/j.bbamcr.2015.04.008
  11. Denton, R.M. (2009). Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta 1787, 1309-1316. https://doi.org/10.1016/j.bbabio.2009.01.005
  12. Eletto, D., Chevet, E., Argon, Y., and Appenzeller-Herzog, C. (2014). Redox controls UPR to control redox. J. Cell Sci. 127, 3649-3658. https://doi.org/10.1242/jcs.153643
  13. Gilon, P., Chae, H.Y., Rutter, G.A., and Ravier, M.A. (2014). Calcium signaling in pancreatic beta-cells in health and in Type 2 diabetes. Cell Calcium 56, 340-361. https://doi.org/10.1016/j.ceca.2014.09.001
  14. Gustavo Vazquez-Jimenez, J., Chavez-Reyes, J., Romero-Garcia, T., Zarain-Herzberg, A., Valdes-Flores, J., Manuel Galindo-Rosales, J., Rueda, A., Guerrero-Hernandez, A., and Olivares-Reyes, J.A. (2016). Palmitic acid but not palmitoleic acid induces insulin resistance in a human endothelial cell line by decreasing SERCA pump expression. Cell. Signal. 28, 53-59. https://doi.org/10.1016/j.cellsig.2015.10.001
  15. Gwiazda, K.S., Yang, T.L., Lin, Y., and Johnson, J.D. (2009). Effects of palmitate on ER and cytosolic $Ca^{2+}$ homeostasis in beta-cells. Am. J. Physiol. Endocrinol. Metab. 296, E690-701. https://doi.org/10.1152/ajpendo.90525.2008
  16. Haack, J.A. and Rosenberg, R.L. (1994). Calcium-dependent inactivation of L-type calcium channels in planar lipid bilayers. Biophys. J. 66, 1051-1060. https://doi.org/10.1016/S0006-3495(94)80886-0
  17. Hagenfeldt, L., Wahren, J., Pernow, B., and Raf, L. (1972). Uptake of individual free fatty acids by skeletal muscle and liver in man. J. Clin. Invest. 51, 2324-2330. https://doi.org/10.1172/JCI107043
  18. Hara, T., Mahadevan, J., Kanekura, K., Hara, M., Lu, S., and Urano, F. (2014). Calcium efflux from the endoplasmic reticulum leads to beta-cell death. Endocrinology 155, 758-768. https://doi.org/10.1210/en.2013-1519
  19. Karaskov, E., Scott, C., Zhang, L., Teodoro, T., Ravazzola, M., and Volchuk, A. (2006). Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 147, 3398-3407. https://doi.org/10.1210/en.2005-1494
  20. Kimura, S., Noda, T., and Yoshimori, T. (2007). Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452-460. https://doi.org/10.4161/auto.4451
  21. Lee, J.W., Kim, W.H., Yeo, J., and Jung, M.H. (2010). ER stress is implicated in mitochondrial dysfunction-induced apoptosis of pancreatic beta cells. Mol. Cells 30, 545-549. https://doi.org/10.1007/s10059-010-0161-5
  22. Li, G., Mongillo, M., Chin, K.T., Harding, H., Ron, D., Marks, A.R., and Tabas, I. (2009). Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J. Cell Biol. 186, 783-792. https://doi.org/10.1083/jcb.200904060
  23. Ly, L.D., Xu, S., Choi, S.K., Ha, C.M., Thoudam, T., Cha, S.K., Wiederkehr, A., Wollheim, C.B., Lee, I.K., and Park, K.S. (2017). Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp. Mol. Med. 49, e291. https://doi.org/10.1038/emm.2016.157
  24. Mancini, A.D. and Poitout, V. (2013). The fatty acid receptor FFA1/GPR40 a decade later: how much do we know? Trends Endocrinol. Metab. 24, 398-407. https://doi.org/10.1016/j.tem.2013.03.003
  25. Martino, L., Masini, M., Novelli, M., Beffy, P., Bugliani, M., Marselli, L., Masiello, P., Marchetti, P., and De Tata, V. (2012). Palmitate activates autophagy in INS-1E beta-cells and in isolated rat and human pancreatic islets. PLoS One 7, e36188. https://doi.org/10.1371/journal.pone.0036188
  26. Novoa, I., Zeng, H., Harding, H.P., and Ron, D. (2001). Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J. Cell Biol. 153, 1011-1022. https://doi.org/10.1083/jcb.153.5.1011
  27. Oh, Y.S., Bae, G.D., Baek, D.J., Park, E.Y., and Jun, H.S. (2018). Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Front. Endocrinol. (Lausanne) 9, 384. https://doi.org/10.3389/fendo.2018.00384
  28. Panahi, G., Pasalar, P., Zare, M., Rizzuto, R., and Meshkani, R. (2018). MCU-knockdown attenuates high glucose-induced inflammation through regulating MAPKs/NF-kappaB pathways and ROS production in HepG2 cells. PLoS One 13, e0196580. https://doi.org/10.1371/journal.pone.0196580
  29. Park, H.W. and Lee, J.H. (2014). Calcium channel blockers as potential therapeutics for obesity-associated autophagy defects and fatty liver pathologies. Autophagy 10, 2385-2386. https://doi.org/10.4161/15548627.2014.984268
  30. Park, H.W., Park, H., Semple, I.A., Jang, I., Ro, S.H., Kim, M., Cazares, V.A., Stuenkel, E.L., Kim, J.J., Kim, J.S., et al. (2014). Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers. Nat. Commun. 5, 4834. https://doi.org/10.1038/ncomms5834
  31. Quan, X., Nguyen, T.T., Choi, S.K., Xu, S., Das, R., Cha, S.K., Kim, N., Han, J., Wiederkehr, A., Wollheim, C.B., et al. (2015). Essential role of mitochondrial $Ca^{2+}$ uniporter in the generation of mitochondrial pH gradient and metabolism-secretion coupling in insulin-releasing cells. J. Biol. Chem. 290, 4086-4096. https://doi.org/10.1074/jbc.M114.632547
  32. Ren, T., Zhang, H., Wang, J., Zhu, J., Jin, M., Wu, Y., Guo, X., Ji, L., Huang, Q., Zhang, H., et al. (2017). MCU-dependent mitochondrial Ca(2+) inhibits NAD(+)/SIRT3/SOD2 pathway to promote ROS production and metastasis of HCC cells. Oncogene 36, 5897-5909. https://doi.org/10.1038/onc.2017.167
  33. Rorsman, P. and Ashcroft, F.M. (2018). Pancreatic $\beta$-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev. 98, 117-214. https://doi.org/10.1152/physrev.00008.2017
  34. Salgin, B., Ong, K.K., Thankamony, A., Emmett, P., Wareham, N.J., and Dunger, D.B. (2012). Higher fasting plasma free fatty acid levels are associated with lower insulin secretion in children and adults and a higher incidence of type 2 diabetes. J. Clin. Endocrinol. Metab. 97, 3302-3309. https://doi.org/10.1210/jc.2012-1428
  35. Satir, B.H. and Pampliega, O. (2016). Methods to study interactions between ciliogenesis and autophagy. Methods Mol. Biol. 1454, 53-67. https://doi.org/10.1007/978-1-4939-3789-9_4
  36. Szydlowska, K. and Tymianski, M. (2010). Calcium, ischemia and excitotoxicity. Cell Calcium 47, 122-129. https://doi.org/10.1016/j.ceca.2010.01.003
  37. Tarasov, A.I., Semplici, F., Ravier, M.A., Bellomo, E.A., Pullen, T.J., Gilon, P., Sekler, I., Rizzuto, R., and Rutter, G.A. (2012). The mitochondrial $Ca^{2+}$ uniporter MCU is essential for glucose-induced ATP increases in pancreatic beta-cells. PLoS One 7, e39722. https://doi.org/10.1371/journal.pone.0039722
  38. Tomar, D., Jana, F., Dong, Z., Quinn, W.J., 3rd, Jadiya, P., Breves, S.L., Daw, C.C., Srikantan, S., Shanmughapriya, S., Nemani, N., et al. (2019). Blockade of MCU-mediated $Ca^{2+}$ uptake perturbs lipid metabolism via PP4-dependent AMPK dephosphorylation. Cell Rep. 26, 3709-3725.e7. https://doi.org/10.1016/j.celrep.2019.02.107
  39. Tu, B.P. and Weissman, J.S. (2004). Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 164, 341-346. https://doi.org/10.1083/jcb.200311055
  40. Weissmann, N., Sydykov, A., Kalwa, H., Storch, U., Fuchs, B., Mederos y Schnitzler, M., Brandes, R.P., Grimminger, F., Meissner, M., Freichel, M., et al. (2012). Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nat. Commun. 3, 649. https://doi.org/10.1038/ncomms1660
  41. Wollheim, C.B. and Maechler, P. (2002). Beta-cell mitochondria and insulin secretion: messenger role of nucleotides and metabolites. Diabetes 51 Suppl 1, S37-S42. https://doi.org/10.2337/diabetes.51.2007.S37
  42. Xu, S., Nam, S.M., Kim, J.H., Das, R., Choi, S.K., Nguyen, T.T., Quan, X., Choi, S.J., Chung, C.H., Lee, E.Y., et al. (2015). Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis. 6, e1976. https://doi.org/10.1038/cddis.2015.331
  43. Yi, M., Weaver, D., and Hajnoczky, G. (2004). Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J. Cell Biol. 167, 661-672. https://doi.org/10.1083/jcb.200406038
  44. Zhang, J., Li, Y., Jiang, S., Yu, H., and An, W. (2014). Enhanced endoplasmic reticulum SERCA activity by overexpression of hepatic stimulator substance gene prevents hepatic cells from ER stress-induced apoptosis. Am. J. Physiol. Cell Physiol. 306, C279-C290. https://doi.org/10.1152/ajpcell.00117.2013
  45. Zummo, F.P., Cullen, K.S., Honkanen-Scott, M., Shaw, J.A.M., Lovat, P.E., and Arden, C. (2017). Glucagon-like peptide 1 protects pancreatic $\beta$-cells from death by increasing autophagic flux and restoring lysosomal function. Diabetes 66, 1272-1285. https://doi.org/10.2337/db16-1009

피인용 문헌

  1. Structural Mechanisms of Store-Operated and Mitochondrial Calcium Regulation: Initiation Points for Drug Discovery vol.21, pp.10, 2020, https://doi.org/10.3390/ijms21103642
  2. Diabetes Mellitus, Mitochondrial Dysfunction and Ca 2+ -Dependent Permeability Transition Pore vol.21, pp.18, 2020, https://doi.org/10.3390/ijms21186559
  3. Lipotoxic Impairment of Mitochondrial Function in β-Cells: A Review vol.10, pp.2, 2020, https://doi.org/10.3390/antiox10020293
  4. Cadmium disrupts mitochondrial distribution and activates excessive mitochondrial fission by elevating cytosolic calcium independent of MCU-mediated mitochondrial calcium uptake in its neurotoxicity vol.453, 2021, https://doi.org/10.1016/j.tox.2021.152726
  5. Lipotoxicity and β-Cell Failure in Type 2 Diabetes: Oxidative Stress Linked to NADPH Oxidase and ER Stress vol.10, pp.12, 2020, https://doi.org/10.3390/cells10123328