DOI QR코드

DOI QR Code

Lung Cancer Staging and Associated Genetic and Epigenetic Events

  • Kim, Dohun (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Chungbuk National University and Chungbuk National University Hospital) ;
  • Lee, You-Soub (Department of Biochemistry, College of Medicine, Chungbuk National University) ;
  • Kim, Duk-Hwan (Department of Molecular Cell Biology, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University) ;
  • Bae, Suk-Chul (Department of Biochemistry, College of Medicine, Chungbuk National University)
  • Received : 2019.10.29
  • Accepted : 2020.01.06
  • Published : 2020.01.31

Abstract

The first step in treating lung cancer is to establish the stage of the disease, which in turn determines the treatment options and prognosis of the patient. Many factors are involved in lung cancer staging, but all involve anatomical information. However, new approaches, mainly those based on the molecular biology of cancer, have recently changed the paradigm for lung cancer treatment and have not yet been incorporated into staging. In a group of patients of the same stage who receive the same treatment, some may experience unexpected recurrence or metastasis, largely because current staging methods do not reflect the findings of molecular biological studies. In this review, we provide a brief summary of the latest research on lung cancer staging and the molecular events associated with carcinogenesis. We hope that this paper will serve as a bridge between clinicians and basic researchers and aid in our understanding of lung cancer.

Keywords

References

  1. Agathanggelou, A., Honorio, S., Macartney, D.P., Martinez, A., Dallol, A., Rader, J., Fullwood, P., Chauhan, A., Walker, R., Shaw, J.A., et al. (2001). Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene 20, 1509-1518. https://doi.org/10.1038/sj.onc.1204175
  2. Ahrendt, S.A., Hu, Y., Buta, M., McDermott, M.P., Benoit, N., Yang, S.C., Wu, L., and Sidransky, D. (2003). p53 mutations and survival in stage I non-small-cell lung cancer: results of a prospective study. J. Natl. Cancer Inst. 95, 961-970. https://doi.org/10.1093/jnci/95.13.961
  3. American Joint Committee (1977). Manual for Staging of Cancer 1977 (Chicago: American Joint Committee).
  4. Asamura, H., Chansky, K., Crowley, J., Goldstraw, P., Rusch, V.W., Vansteenkiste, J.F., Watanabe, H., Wu, Y.L., Zielinski, M., Ball, D., et al. (2015). The International Association for the Study of Lung Cancer Lung Cancer Staging Project: proposals for the revision of the N descriptors in the forthcoming 8th edition of the TNM Classification for lung cancer. J. Thorac. Oncol. 10, 1675-1684. https://doi.org/10.1097/JTO.0000000000000678
  5. Belinsky, S.A. (2004). Gene-promoter hypermethylation as a biomarker in lung cancer. Nat. Rev. Cancer 4, 707-717. https://doi.org/10.1038/nrc1432
  6. Belinsky, S.A. (2005). Silencing of genes by promoter hypermethylation: key event in rodent and human lung cancer. Carcinogenesis 26, 1481-1487. https://doi.org/10.1093/carcin/bgi020
  7. Birchmeier, C., Birchmeier, W., Gherardi, E., and Vande Woude, G.F. (2003). Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol. 4, 915-925. https://doi.org/10.1038/nrm1261
  8. Cadranel, J., Mauguen, A., Faller, M., Zalcman, G., Buisine, M.P., Westeel, V., Longchampt, E., Wislez, M., Coudert, B., Daniel, C., et al. (2012). Impact of systematic EGFR and KRAS mutation evaluation on progression-free survival and overall survival in patients with advanced non-small-cell lung cancer treated by erlotinib in a French prospective cohort (ERMETIC project--part 2). J. Thorac. Oncol. 7, 1490-1502. https://doi.org/10.1097/JTO.0b013e318265b2b5
  9. Cappuzzo, F., Marchetti, A., Skokan, M., Rossi, E., Gajapathy, S., Felicioni, L., Del Grammastro, M., Sciarrotta, M.G., Buttitta, F., Incarbone, M., et al. (2009). Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J. Clin. Oncol. 27, 1667-1674. https://doi.org/10.1200/JCO.2008.19.1635
  10. Chen, X., Deng, Y., Shi, Y., Zhu, W., Cai, Y., Xu, C., Zhu, K., Zheng, X., Chen, G., Xie, Q., et al. (2018). Loss of expression rather than cytoplasmic mislocalization of RUNX3 predicts worse outcome in non-small cell lung cancer. Oncol. Lett. 15, 5043-5055.
  11. Dubois, F., Keller, M., Calvayrac, O., Soncin, F., Hoa, L., Hergovich, A., Parrini, M.C., Mazieres, J., Vaisse-Lesteven, M., Camonis, J., et al. (2016). RASSF1A suppresses the invasion and metastatic potential of human non-small cell lung cancer cells by inhibiting YAP activation through the GEF-H1/RhoB pathway. Cancer Res. 76, 1627-1640. https://doi.org/10.1158/0008-5472.CAN-15-1008
  12. Duhig, E.E., Dettrick, A., Godbolt, D.B., Pauli, J., van Zwieten, A., Hansen, A.R., Yang, I.A., Fong, K.M., Clarke, B.E., and Bowman, R.V. (2015). Mitosis trumps T stage and proposed international association for the study of lung cancer/american thoracic society/european respiratory society classification for prognostic value in resected stage 1 lung adenocarcinoma. J. Thorac. Oncol. 10, 673-681. https://doi.org/10.1097/JTO.0000000000000446
  13. Eberhardt, W.E., Mitchell, A., Crowley, J., Kondo, H., Kim, Y.T., Turrisi, A., 3rd., Goldstraw, P., and Rami-Porta, R. (2015). The IASLC lung cancer staging project: proposals for the revision of the M descriptors in the forthcoming eighth edition of the TNM Classification of lung cancer. J. Thorac. Oncol. 10, 1515-1522. https://doi.org/10.1097/JTO.0000000000000673
  14. Feldser, D.M., Kostova, K.K., Winslow, M.M., Taylor, S.E., Cashman, C., Whittaker, C.A., Sanchez-Rivera, F.J., Resnick, R., Bronson, R., Hemann, M.T., et al. (2010). Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 468, 572-575. https://doi.org/10.1038/nature09535
  15. Go, H., Jeon, Y.K., Park, H.J., Sung, S.W., Seo, J.W., and Chung, D.H. (2010). High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer. J. Thorac. Oncol. 5, 305-313. https://doi.org/10.1097/JTO.0b013e3181ce3d1d
  16. Goldstraw, P., Chansky, K., Crowley, J., Rami-Porta, R., Asamura, H., Eberhardt, W.E., Nicholson, A.G., Groome, P., Mitchell, A., and Bolejack, V. (2016). The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM Classification for lung cancer. J. Thorac. Oncol. 11, 39-51. https://doi.org/10.1016/j.jtho.2015.09.009
  17. Ito, Y., Bae, S.C., and Chuang, L.S. (2015). The RUNX family: developmental regulators in cancer. Nat. Rev. Cancer 15, 81-95. https://doi.org/10.1038/nrc3877
  18. Izumchenko, E., Chang, X., Brait, M., Fertig, E., Kagohara, L.T., Bedi, A., Marchionni, L., Agrawal, N., Ravi, R., Jones, S., et al. (2015). Targeted sequencing reveals clonal genetic changes in the progression of early lung neoplasms and paired circulating DNA. Nat. Commun. 16, 8258.
  19. Jamal-Hanjani, M., Wilson, G.A., McGranahan, N., Birkbak, N.J., Watkins, T.B.K., Veeriah, S., Shafi, S., Johnson, D.H., Mitter, R., Rosenthal, R., et al. (2017). Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109-2121. https://doi.org/10.1056/NEJMoa1616288
  20. Janne, P.A., Yang, J.C., Kim, D.W., Planchard, D., Ohe, Y., Ramalingam, S.S., Ahn, M.J., Kim, S.W., Su, W.C., Horn, L., et al. (2015). AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med. 372, 1689-1699. https://doi.org/10.1056/NEJMoa1411817
  21. Jones, P.A. and Baylin, S.B. (2007). The epigenomics of cancer. Cell 128, 683-692. https://doi.org/10.1016/j.cell.2007.01.029
  22. Kobayashi, N., Toyooka, S., Soh, J., Ichimura, K., Yanai, H., Suehisa, H., Ichihara, S., Yamane, M., Aoe, M., Sano, Y., et al. (2007). Risk factors for recurrence and unfavorable prognosis in patients with stage I non-small cell lung cancer and a tumor diameter of 20 mm or less. J. Thorac. Oncol. 2, 808-812. https://doi.org/10.1097/JTO.0b013e31814617c7
  23. Kobayashi, S., Boggon, T.J., Dayaram, T., Jänne, P.A., Kocher, O., Meyerson, M., Johnson, B.E., Eck, M.J., Tenen, D.G., and Halmos, B. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786-792. https://doi.org/10.1056/NEJMoa044238
  24. Kosaka, T., Yatabe, Y., Onozato, R., Kuwano, H., and Mitsudomi, T. (2009). Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma. J. Thorac. Oncol. 4, 22-29. https://doi.org/10.1097/JTO.0b013e3181914111
  25. Lee, J.W., Kim, D.M., Jang, J.W., Park, T.G., Song, S.H., Lee, Y.S., Chi, X.Z., Park, I.Y., Hyun, J.W., Ito, Y., et al. (2019). RUNX3 regulates cell cycle-dependent chromatin dynamics by functioning as a pioneer factor of the restriction-point. Nat. Commun. 10, 1897. https://doi.org/10.1038/s41467-019-09810-w
  26. Lee, K.S., Lee, Y.S., Lee, J.M., Ito, K., Cinghu, S., Kim, J.H., Jang, J.W., Li, Y.H., Goh, Y.M., Chi, X.Z., et al. (2010). Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene 29, 3349-3361. https://doi.org/10.1038/onc.2010.79
  27. Lee, Y.S. and Bae, S.C. (2016). How do K-RAS-activated cells evade cellular defense mechanisms? Oncogene 35, 827-832. https://doi.org/10.1038/onc.2015.153
  28. Lee, Y.S., Lee, J.W., Jang, J.W., Chi, X.Z., Kim, J.H., Li, Y.H., Kim, M.K., Kim, D.M., Choi, B.S., Kim, E.G., et al. (2013). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell 24, 603-616. https://doi.org/10.1016/j.ccr.2013.10.003
  29. Matsumoto, S., Iwakawa, R., Kohno, T., Suzuki, K., Matsuno, Y., Yamamoto, S., Noguchi, M., Shimizu, E., and Yokota, J. (2006). Frequent EGFR mutations in noninvasive bronchioloalveolar carcinoma. Int. J. Cancer 118, 2498-2504. https://doi.org/10.1002/ijc.21670
  30. McEvoy, S.H., Halpenny, D.F., Viteri-Jusue, A., Hayes, S.A., Plodkowski, A.J., Riely, G.J., and Ginsberg, M.S. (2017). Investigation of patterns of nodal metastases in BRAF mutant lung cancer. Lung Cancer 108, 62-65. https://doi.org/10.1016/j.lungcan.2017.02.024
  31. Min, J.H., Lee, H.Y., Lee, K.S., Han, J., Park, K., Ahn, M.J., and Lee, S.J. (2010). Stepwise evolution from a focal pure pulmonary ground-glass opacity nodule into an invasive lung adenocarcinoma: an observation for more than 10 years. Lung Cancer 69, 123-126. https://doi.org/10.1016/j.lungcan.2010.04.022
  32. Nakanishi, H., Matsumoto, S., Iwakawa, R., Kohno, T., Suzuki, K., Tsuta, K., Matsuno, Y., Noguchi, M., Shimizu, E., Yokota, J. (2009). Whole genome comparison of allelic imbalance between noninvasive and invasive small-sized lung adenocarcinomas. Cancer Res. 69, 1615-1623. https://doi.org/10.1158/0008-5472.CAN-08-3218
  33. Noguchi, M. (2010). Stepwise progression of pulmonary adenocarcinoma: clinical and molecular implications. Cancer Metastasis Rev. 29, 15-21. https://doi.org/10.1007/s10555-010-9210-y
  34. Omar, M.F., Ito, K., Nga, M.E., Soo, R., Peh, B.K., Ismail, T.M., Thakkar, B., Soong, R., Ito, Y., and Salto-Tellez, M. (2012). RUNX3 downregulation in human lung adenocarcinoma is independent of p53, EGFR or KRAS status. Pathol. Oncol. Res. 18, 783-792. https://doi.org/10.1007/s12253-011-9485-5
  35. Pulling, L.C., Divine, K.K., Klinge, D.M., Gilliland, F.D., Kang, T., Schwartz, A.G., Bocklage, T.J., and Belinsky, S.A. (2003). Promoter hypermethylation of the O6-methylguanine-DNA methyltransferase gene: more common in lung adenocarcinomas from never-smokers than smokers and associated with tumor progression. Cancer Res. 63, 4842-4848.
  36. Pulling, L.C., Vuillemenot, B.R., Hutt, J.A., Devereux, T.R., and Belinsky, S.A. (2004). Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens. Cancer Res. 64, 3844-3848. https://doi.org/10.1158/0008-5472.CAN-03-2119
  37. Rami-Porta, R. (2016). IASLC Staging Manual in Thoracic Oncology, 2nd Edition (North Fort Myers: Editorial Rx Press).
  38. Rami-Porta, R., Bolejack, V., Giroux, D.J., Chansky, K., Crowley, J., Asamura, H., and Goldstraw, P. (2014). The IASLC lung cancer staging project: the new database to inform the eighth edition of the TNM Classification of lung cancer. J. Thorac. Oncol. 9, 1618-1624. https://doi.org/10.1097/JTO.0000000000000334
  39. Riquet, M., Le Pimpec-Barthes, F., and Danel, C. (1998). Axillary lymph node metastases from bronchogenic carcinoma. Ann. Thorac. Surg. 66, 920-922. https://doi.org/10.1016/S0003-4975(98)00556-6
  40. Satoh, H., Ishikawa, H., Kagohashi, K., Kurishima, K., and Sekizawa, K. (2009). Axillary lymph node metastasis in lung cancer. Med. Oncol. 26, 147-150. https://doi.org/10.1007/s12032-008-9097-4
  41. Sequist, L.V., Yang, J.C., Yamamoto, N., O'Byrne, K., Hirsh, V., Mok, T., Geater, S.L., Orlov, S., Tsai, C.M., Boyer, M., et al. (2013). Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31, 3327-3334. https://doi.org/10.1200/JCO.2012.44.2806
  42. Shepherd, F.A., Lacas, B., Le Teuff, G., Hainaut, P., Jänne, P.A., Pignon, J.P., Le Chevalier, T., Seymour, L., Douillard, J.Y., Graziano, S., et al. (2017). Pooled analysis of the prognostic and predictive effects of TP53 comutation status combined with KRAS or EGFR mutation in early-stage resected non-small-cell lung cancer in four trials of adjuvant chemotherapy. J. Clin. Oncol. 35, 2018-2027. https://doi.org/10.1200/JCO.2016.71.2893
  43. Travis, W.D., Asamura, H., Bankier, A.A., Beasley, M.B., Detterbeck, F., Flieder, D.B., Goo, J.M., MacMahon, H., Naidich, D., Nicholson, A.G., et al. (2016). The IASLC lung cancer staging project: proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM Classification of lung cancer. J. Thorac. Oncol. 11, 1204-1223. https://doi.org/10.1016/j.jtho.2016.03.025
  44. Tsai, T.H., Wu, S.G., Hsieh, M.S., Yu, C.J., Yang, J.C., and Shih, J.Y. (2015). Clinical and prognostic implications of RET rearrangements in metastatic lung adenocarcinoma patients with malignant pleural effusion. Lung Cancer 88, 208-214. https://doi.org/10.1016/j.lungcan.2015.02.018
  45. Vlahos, I. (2018). Dilemmas in lung cancer staging. Radiol. Clin. North Am. 56, 419-435. https://doi.org/10.1016/j.rcl.2018.01.010
  46. Wistuba, II., Behrens, C., Milchgrub, S., Bryant, D., Hung, J., Minna, J.D., and Gazdar, A.F. (1999). Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene 21, 643-650. https://doi.org/10.1038/sj.onc.1205070
  47. Yanagawa, N., Tamura, G., Oizumi, H., Kanauchi, N., Endoh, M., Sadahiro, M., and Motoyama, T. (2007). Promoter hypermethylation of RASSF1A and RUNX3 genes as an independent prognostic prediction marker in surgically resected non-small cell lung cancers. Lung Cancer 58, 131-138. https://doi.org/10.1016/j.lungcan.2007.05.011
  48. Yatabe, Y., Borczuk, A.C., and Powell, C.A. (2014). Do all lung adenocarcinomas follow a stepwise progression? Lung Cancer 74, 7-11. https://doi.org/10.1016/j.lungcan.2011.05.021
  49. Yoo, S.B., Chung, J.H., Lee, H.J., Lee, C.T., Jheon, S., and Sung, S.W. (2010). Epidermal growth factor receptor mutation and p53 overexpression during the multistage progression of small adenocarcinoma of the lung. J. Thorac. Oncol. 5, 964-969. https://doi.org/10.1097/JTO.0b013e3181dd15c0

Cited by

  1. TRIM2 directly deubiquitinates and stabilizes Snail1 protein, mediating proliferation and metastasis of lung adenocarcinoma vol.20, 2020, https://doi.org/10.1186/s12935-020-01316-6
  2. Elastic Net Models Based on DNA Copy Number Variations Predicts Clinical Features, Expression Signatures, and Mutations in Lung Adenocarcinoma vol.12, 2021, https://doi.org/10.3389/fgene.2021.668040
  3. Upregulation of TRIP13 promotes the malignant progression of lung cancer via the EMT pathway vol.46, pp.2, 2020, https://doi.org/10.3892/or.2021.8123
  4. Multi-omics analysis of genomics, epigenomics and transcriptomics for molecular subtypes and core genes for lung adenocarcinoma vol.21, pp.1, 2020, https://doi.org/10.1186/s12885-021-07888-4
  5. Fibroblast growth factor 11 (FGF11) promotes non-small cell lung cancer (NSCLC) progression by regulating hypoxia signaling pathway vol.19, pp.1, 2020, https://doi.org/10.1186/s12967-021-03018-7