References
- Aal, A.A., El-Sheikh, S. and Ahmed, Y. (2009), "Electrodeposited composite coating of Ni-W-P with nano-sized rod-and spherical-shaped SiC particles", Mater. Res. Bull., 44(1), 151-159. https://doi.org/10.1016/j.materresbull.2008.03.008.
- Akgoz, B. and Civalek, O. (2013), "Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM)", Compos. Part B: Eng., 55, 263-268. https://doi.org/10.1016/j.compositesb.2013.06.035.
- Akgoz, B. and Civalek, O. (2014), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20(4), 606-616. https://doi.org/10.1177/1077546312463752.
- Arefi, M. and Zenkour, A.M. (2017), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mat. Syst. Str., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930.
- Ashok, C. and Rao, K.V. (2014), "ZnO/TiO2 nanocomposite rods synthesized by microwave-assisted method for humidity sensor application", Superlattices and Microstruct., 76, 46-54. https://doi.org/10.1016/j.spmi.2014.09.029.
- Aydogdu, M. (2012), "Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity", Mech. Res. Commun., 43, 34-40. https://doi.org/10.1016/j.mechrescom.2012.02.001.
- Aydogdu, M. (2014), "Longitudinal wave propagation in multiwalled carbon nanotubes", Compos. Struct., 107, 578-584. https://doi.org/10.1016/j.compstruct.2013.08.031.
- Aydogdu, M. (2015), "A nonlocal rod model for axial vibration of double-walled carbon nanotubes including axial van der Waals force effects", J. Vib. Control, 21(16), 3132-3154. https://doi.org/10.1177/1077546313518954.
- Chang, T.P. (2013), "Axial vibration of non-uniform and nonhomogeneous nanorods based on nonlocal elasticity theory", Appl. Math. Comput., 219(10), 4933-4941. https://doi.org/10.1016/j.amc.2012.11.059.
- Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005.
- Danesh, M., Farajpour, A. and Mohammadi, M. (2012), "Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method", Mech. Res., 39(1), 23-27. https://doi.org/10.1016/j.mechrescom.2011.09.004.
- Gul, U., Aydogdu, M. and Gaygusuzoglu, G. (2017), "Axial dynamics of a nanorod embedded in an elastic medium using doublet mechanics", Compos. Struct., 160, 1268-1278. https://doi.org/10.1016/j.compstruct.2016.11.023.
- Guo, SQ. and Yang, S.P. (2012), "Axial vibration analysis of nanocones based on nonlocal elasticity theory", Acta Mechanica Sinica, 28(3), 801-807. https://doi.org/10.1007/s10409-012-0109-4.
- Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Archive for Rational Mechanics and Analysis, 57(4), 291-323. https://doi.org/10.1007/BF00261375.
- Hosseini-Hashemi, S., Fakher, M. and Nazemnezhad, R. (2017), "Longitudinal vibrations of aluminum nanobeams by applying elastic moduli of bulk and surface: molecular dynamics simulation and continuum model", Mater. Res. Express, 4(8), 085036. https://doi.org/10.1088/2053-1591/aa8152
- Jandaghian, A.A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions", Steel Compos. Struct., 25(1), 67-78. https://doi.org/10.12989/scs.2017.25.1.067.
- Karlicic, D., Cajic, M., Murmu, T. and Adhikari, S. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled doublenanorod systems", Eur. J. Mech.-A/Solids, 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005.
- Kiani, K. (2010), "Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique", Physica E: Low-Dimensional Syst. Nanostruct., 43(1), 387-397. https://doi.org/10.1016/j.physe.2010.08.022.
- Li, L., Hu, Y. and Li, X. (2016), "Longitudinal vibration of sizedependent rods via nonlocal strain gradient theory", Int. J. Mech. Sci., 115-116, 135-144. https://doi.org/10.1016/j.ijmecsci.2016.06.011.
- Li, X.F., Tang, G.J., Shen, Z.B. and Lee, K.Y. (2017), "Sizedependent resonance frequencies of longitudinal vibration of a nonlocal Love nanobar with a tip nanoparticle", Math. Mech. Solids, 22(6), 1529-1542. https://doi.org/10.1177/1081286516640597.
- Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
- Murmu, T. and Adhikari, S. (2010), "Nonlocal effects in the longitudinal vibration of double-nanorod systems", Physica E: Low-Dimensional Syst. Nanostruct., 43(1), 415-422. https://doi.org/10.1016/j.physe.2010.08.023.
- Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Free vibration analysis of multi-layer graphene nanoribbons incorporating interlayer shear effect via molecular dynamics simulations and nonlocal elasticity", Physics Lett. A, 378(44), 3225-3232. https://doi.org/10.1016/j.physleta.2014.09.037.
- Nazemnezhad, R. and Kamali, K. (2018a), "An analytical study on the size dependent longitudinal vibration analysis of thick nanorods", Mater. Res. Express, 5(7), 075016. https://doi.org/10.1088/2053-1591/aacf6e
- Nazemnezhad, R. and Kamali, K. (2018b), "Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory", Steel Compos. Struct., 28(6), 749-758. https://doi.org/10.12989/scs.2018.28.6.749.
- Nazemnezhad, R. and Shokrollahi, H. (2019), "Free axial vibration analysis of functionally graded nanorods using surface elasticity theory", Modares Mech. Eng., 18(9), 131-141.
- Nazemnezhad, R., Shokrollahi, H. and Hosseini-Hashemi, S. (2014), "Sandwich beam model for free vibration analysis of bilayer graphene nanoribbons with interlayer shear effect", J. Appl. Phys., 115(17), 174303. ttps://doi.org/10.1063/1.4874221.
- Oveissi, S., Eftekhari, S.A. and Toghraie, D. (2016), "Longitudinal vibration and instabilities of carbon nanotubes conveying fluid considering size effects of nanoflow and nanostructure", Physica E: Low-Dimensional Syst. Nanostruct., 83, 164-173. https://doi.org/10.1016/j.physe.2016.05.010.
- Patil, A.V., Beker, A.F., Wiertz, F.G., Heering, H.A., Coslovich, G., Vlijm, R. and Oosterkamp, T.H. (2010), "Fabrication and characterization of polymer insulated carbon nanotube modified electrochemical nanoprobes", Nanoscale, 2(5), 734-738. https://doi.org/10.1039/b9nr00281b
- Rahmani, O., Hosseini, S., Ghoytasi, I. and Golmohammadi, H. (2018), "Free vibration of deep curved FG nano-beam based on modified couple stress theory", Steel Compos. Struct., 26(5), 607-620. https://doi.org/10.12989/scs.2018.26.5.607.
- Rao, S.S. (2007). Vibration of Continuous Systems: John Wiley & Sons.
- Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073.
- Simsek, M. (2012), "Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods", Comput. Mater. Sci., 61, 257-265. https://doi.org/10.1016/j.commatsci.2012.04.001.
- Tagrara, S., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259.
- Watanabe, Y., Inaguma, Y., Sato, H. and Miura-Fujiwara, E. (2009), "A novel fabrication method for functionally graded materials under centrifugal force: The centrifugal mixed-powder method", Materials, 2(4), 2510-2525. https://doi.org/10.3390/ma2042510.
- Zhang, T., Kumari, L., Du, G., Li, W., Wang, Q., Balani, K. and Agarwal, A. (2009), "Mechanical properties of carbon nanotube-alumina nanocomposites synthesized by chemical vapor deposition and spark plasma sintering", Compos. Part A: Appl. Sci. Manufact., 40(1), 86-93. https://doi.org/10.1016/j.compositesa.2008.10.003.
- Zheng, Y., Wang, S., You, M., Tan, H. and Xiong, W. (2005), "Fabrication of nanocomposite Ti (C, N)-based cermet by spark plasma sintering", Mater. Chem. Phys., 92(1), 64-70. https://doi.org/10.1016/j.matchemphys.2004.12.031.
Cited by
- An investigation of mechanical properties of kidney tissues by using mechanical bidomain model vol.11, pp.2, 2020, https://doi.org/10.12989/anr.2021.11.2.193