References
- M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani, N. Mac Dowell, J. R. Fernandez, M.-C. Ferrari, R. Gross, J. P. Hallett, R. S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R. T. J. Porter, M. Pourkashanian, G. T. Rochelle, N. Shah, J. G. Yao, and P. S. Fennell, "Carbon capture and storage update", Energy Environ. Sci., 7, 130 (2014). https://doi.org/10.1039/C3EE42350F
-
J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O'Hare, and Z. Zhong, "Recent advances in solid sorbents for
$CO_2$ capture and new development trends", Energy Environ. Sci., 7, 3478 (2014). https://doi.org/10.1039/C4EE01647E -
A. B. Rao and E. S. Rubin, "A technical, economic, and environmental assessment of amine-based
$CO_2$ capture technology for power plant greenhouse gas control", Environ. Sci. Technol., 36, 4467 (2002). https://doi.org/10.1021/es0158861 -
B. P. Spigarelli and S. K. Kawatra, "Opportunities and challenges in carbon dioxide capture", J.
$CO_2$ Util., 1, 69 (2013). -
S. J. Moon, H. J. Min, N. U. Kim, and J. H. Kim, "Fabrication of polymeric blend membranes using PBEM-POEM comb copolymer and poly(ethylene glycol) for
$CO_2$ capture", Membr. J., 29, 223 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.4.223 -
C. W. S. Chi, J. H. Lee, M. S. Park, and J. H. Kim, "Recent research trends of mixed matrix membranes for
$CO_2$ separation Won Seok", Membr. J., 25, 373 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.373 -
M. Jung and H. Oh, "
$CO_2/CH_4$ separation in metal-organic frameworks: Flexibility or open metal sites?", Membr. J., 28, 136 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.2.136 - J. H. Lee and R. Patel, "Poly(ether block amide) (PEBA) based membranes for carbon dioxide separation", Membr. J., 29, 1 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.1
-
H. Sun, C. Wu, B. Shen, X. Zhang, Y. Zhang, and J. Huang, "Progress in the development and application of CaO-based adsorbents for
$CO_2$ capture - a review", Materials Today Sustainability, 1-2, 1 (2018). https://doi.org/10.1016/j.mtsust.2018.08.001 -
S. A. Salaudeen, B. Acharya, and A. Dutta, "CaO-based
$CO_2$ sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling", J.$CO_2$ Util., 23, 179 (2018). -
C. Ortiz, J. M. Valverde, R. Chacartegui, L. A. Perez-Maqueda, and P. Gimenez, "The calcium-looping (
$CaCO_3/CaO$ ) process for thermochemical energy storage in concentrating solar power plants", Renew. Sust. Energ. Rev., 113, 109252 (2019). https://doi.org/10.1016/j.rser.2019.109252 - B. J. O'Neill, D. H. K. Jackson, J. Lee, C. Canlas, P. C. Stair, C. L. Marshall, J. W. Elam, T. F. Kuech, J. A. Dumesic, and G. W. Huber, "Catalyst design with atomic layer deposition", ACS Catal., 5, 1804 (2015). https://doi.org/10.1021/cs501862h
-
S. M. Kim, W. C. Liao, A. M. Kierzkowska, T. Margossian, D. Hosseini, S. Yoon, M. Broda, C. Coperet, and C. R. Muller, "In situ XRD and dynamic nuclear polarization surface enhanced NMR spectroscopy unravel the deactivation mechanism of CaO-based,
$Ca_3Al_2O_6$ -stabilized$CO_2$ sorbents", Chem. Mater., 30, 1344 (2018). https://doi.org/10.1021/acs.chemmater.7b05034 - S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of gases in multimolecular layers", J. Am. Chem. Soc., 60, 309 (1938). https://doi.org/10.1021/ja01269a023
- J. DeBoer and C. Zwicker, "The polarization due to adsorption isotherms", Z. Phys. Chem., 3, 407 (1929).
- K. Huang, F. Liu, J. P. Fan, and S. Dai, "Open and hierarchical carbon framework with ultralarge pore volume for efficient capture of carbon dioxide", ACS Appl. Mater. Interfaces, 10, 36961 (2018). https://doi.org/10.1021/acsami.8b12182
-
A. Dal Pozzo, A. Armutlulu, M. Rekhtina, C. R. Muller, and V. Cozzani, "
$CO_2$ uptake potential of Ca-based air pollution control residues over repeated carbonation-calcination cycles", Energy & Fuels, 32, 5386 (2018). https://doi.org/10.1021/acs.energyfuels.8b00391 -
J. Tong, X. Lei, J. Fang, M. Han, and K. Huang, "Remarkable
$O_2$ permeation through a mixed conducting carbon capture membrane functionalized by atomic layer deposition", J. Mater. Chem. A, 4, 1828 (2016). https://doi.org/10.1039/C5TA10105K - X. Liang, X. Lu, M. Yu, A. S. Cavanagh, D. L. Gin, and A. W. Weimer, "Modification of nanoporous supported lyotropic liquid crystal polymer membranes by atomic layer deposition", J. Membr. Sci., 349, 1 (2010). https://doi.org/10.1016/j.memsci.2009.11.067
-
J. Chen, L. Duan, and Z. Sun, "Accurate control of cage-like CaO hollow microspheres for enhanced
$CO_2$ capture in calcium looping via a template-assisted synthesis approach", Environ. Sci. Technol., 53, 2249 (2019). https://doi.org/10.1021/acs.est.8b06138 -
J. Liao, B. Jin, Y. Zhao, and Z. Liang, "Highly efficient and durable metal-organic framework material derived Ca-based solid sorbents for
$CO_2$ capture", Chem. Eng. J., 1028 (2019). -
C. Chi, Y. Li, W. Zhang, and Z. Wang, "Synthesis of a hollow microtubular Ca/Al sorbent with high
$CO_2$ uptake by hard templating", Appl. Energy, 113382 (2019). -
S. Li, T. Jiang, Z. Xu, Y. Zhao, X. Ma, and S. Wang, "The Mn-promoted double-shelled
$CaCO_3$ hollow microspheres as high efficient$CO_2$ adsorbents", Chem. Eng. J., 53 (2019). https://doi.org/10.1016/j.cej.2018.06.182 -
M. A. Naeem, A. Armutlulu, Q. Imtiaz, F. Donat, R. Schaublin, A. Kierzkowska, and C. R. Muller, "Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity
$CO_2$ sorbents", Nat. Commun., 9, 1 (2018). https://doi.org/10.1038/s41467-017-02088-w -
A. Dal Pozzo, A. Armutlulu, M. Rekhtina, P. M. Abdala, and C. R. Muller, "
$CO_2$ uptake and cyclic stability of MgO-based$CO_2$ sorbents promoted with alkali metal nitrates and their eutectic mixtures", ACS Appl. Ener. Mat., 2, 1295 (2019). https://doi.org/10.1021/acsaem.8b01852 -
H. Cui, Q. Zhang, Y. Hu, C. Peng, X. Fang, Z. Cheng, V. V. Galvita, and Z. Zhou, "Ultrafast and stable
$CO_2$ capture using alkali metal salt-promoted$MgO-CaCO_3$ sorbents", ACS Appl. Mater. Interfaces, 10, 20611 (2018). https://doi.org/10.1021/acsami.8b05829 -
S. M. Kim, P. M. Abdala, M. Broda, D. Hosseini, C. Coperet, and C. Muller, "Integrated
$CO_2$ capture and conversion as an efficient process for fuels from greenhouse gases", ACS Catal., 8, 2815 (2018). https://doi.org/10.1021/acscatal.7b03063 -
A. Armutlulu, M. A. Naeem, H. J. Liu, S. M. Kim, A. Kierzkowska, A. Fedorov, and C. R. Muller, "Multishelled CaO microspheres stabilized by atomic layer deposition of
$Al_2O_3$ for enhanced$CO_2$ capture performance", Adv. Mater., 29, 1702896 (2017). https://doi.org/10.1002/adma.201702896 -
R. Han, J. Gao, S. Wei, Y. Su, and Y. Qin, "Development of highly effective
$CaO@Al_2O_3$ with hierarchical architecture$CO_2$ sorbents: Via a scalable limited-space chemical vapor deposition technique", J. Mater. Chem. A, 6, 3462 (2018). https://doi.org/10.1039/C7TA09960F -
N. S. Yuzbasi, A. Armutlulu, P. M. Abdala, and C. R. Muller, "Atomic layer deposition of a film of
$Al_2O_3$ on electrodeposited copper foams to yield highly effective oxygen carriers for chemical looping combustion-based$CO_2$ capture", ACS Appl. Mater. Interfaces, 10, 37994 (2018). https://doi.org/10.1021/acsami.8b11653