References
- J. G. Hong, B. Zhang, S. Glabman, N. Uzal, X. Dou, H. Zhang, X. Wei, and Y. Chen, "Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review", J. Membr. Sci., 486, 71 (2015). https://doi.org/10.1016/j.memsci.2015.02.039
- X. Li, H. Zhang, Z. Mai, H. Zhang, and I. Vankelecom, "Ion exchange membranes for vanadium redox flow battery (VRB) applications", Energy & Environ. Sci., 4, 1147 (2011). https://doi.org/10.1039/c0ee00770f
- W. D. Schroer, "Polymerization of En-sulfur compounds", Methoden der Organischen Chemie, Stuttgart-New York, SG-NY, (1987)
- S. Ryu, J.-H. Kim, J.-Y. Lee, and S.-H. Moon, "Investigation of the effects of electric fields on the nanostructure of Nafion and its proton conductivity", J. Mater. Chem. A, 6, 20836 (2018). https://doi.org/10.1039/C8TA06752J
- J.-H. Kim, S. Ryu, J.-Y. Lee, and S.-H. Moon, "Preparation of high-conductivity QPPO (quaternary-aminated poly (2,6-dimethyl-1,4-phenyleneoxide)) membranes by electrical treatment", J. Membr. Sci., 553, 82 (2018). https://doi.org/10.1016/j.memsci.2017.12.009
- J.-Y. Lee, J.-H. Lee, S. Ryu, S.-H. Yun, and S.-H. Moon, "Electrically aligned ion channels in cation exchange membranes and their polarized conductivity", J. Membr. Sci., 478, 19-24 (2015). https://doi.org/10.1016/j.memsci.2014.12.049
- S. Mayavan, H.-S. Jang, M.-J. Lee, S. H. Choi, and S.-M. Choi, "Enhancing the catalytic activity of Pt nanoparticles using poly sodium styrene sulfonate stabilized graphene supports for methanol oxidation", J. Mater. Chem. A, 1, 3489 (2013). https://doi.org/10.1039/c2ta00619g
- B. L. Rivas and C. Munoz, "Synthesis and metal ion adsorption properties of poly(4-sodium styrene sulfonate-co-acrylic acid)", J. Appl. Polym. Sci., 114, 1587 (2009). https://doi.org/10.1002/app.30722
- M. Yazdimamaghani, M. Razavi, M. Mozafari, D. Vashaee, H. Kotturi, and L. Tayebi, "Biomineralization and biocompatibility studies of bone conductive scaffolds containing poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS)", J. Mater. Sci. Mater. Med., 26, 274 (2015). https://doi.org/10.1007/s10856-015-5599-8
- S. Turmanova, K. Vassilev, and S. Boneva, "Preparation, structure and properties of metal-copolymer complexes of poly-4-vinylpyridine radiation-grafted onto polymer films", React. Funct. Polym., 68, 759 (2008). https://doi.org/10.1016/j.reactfunctpolym.2007.11.015
- B. Gupta, F. N. Buchi, and G. G. Scherer, "Materials research aspects of organic solid proton conductors", Solid State Ion., 61, 213 (1993). https://doi.org/10.1016/0167-2738(93)90356-8
- Q. Guo, P. N. Pintauro, H. Tang, and S. O'Connor, "Sulfonated and crosslinked polyphosphazene-basedproton-exchange membranes", J. Membr. Sci., 154, 175 (1999). https://doi.org/10.1016/S0376-7388(98)00282-8
- K.-D. Kreuer, A. Rabenau, and W. Weppner, "Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors", Angew. Chem., 94, 224 (1982). https://doi.org/10.1002/ange.19820940335
- K.-D. Kreuer, S. J. P. E. Spohr, and M. Schuster, "Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology", Chem. Rev., 104, 4637 (2004). https://doi.org/10.1021/cr020715f
- K. A. Mauritz, "Organic-inorganic hybrid materials: Perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides", Mater. Sci. Eng. C, 6, 121 (1998). https://doi.org/10.1016/S0928-4931(98)00042-3
- A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, and Q. Liu, "Redox flow batteries: A review", J. Appl. Electrochem, 41, 1137 (2011). https://doi.org/10.1007/s10800-011-0348-2
- T. Mohammadi and M. Skyllas-Kazacos, "Characterisation of novel composite membrane for redox flow battery applications", J. Membr. Sci., 98, 77 (1995). https://doi.org/10.1016/0376-7388(94)00178-2
- S. C. Chieng, M. Kazacos, and M. Skyllas-Kazaco, "Modification of daramic, microporous separator, for redox flow battery applications", J. Membr. Sci., 75, 81 (1992). https://doi.org/10.1016/0376-7388(92)80008-8
-
J. Xi, Z. Wu, X. Qiu, and L. Chen, "
$Nafion/SiO_2$ hybrid membrane for vanadium redox flow battery", J. Power Source, 166, 531 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.069 - M. Gil, X. Ji, X. Li, H. Na, J. Eric Hampsey, and Y. Lu, "Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications", J. Membr. Sci., 234, 75 (2004). https://doi.org/10.1016/j.memsci.2003.12.021
- X. Luo, Z. Lu, J. Xi, Z. Wu, W. Zhu, L. Chen, and X. Qiu, "Influences of permeation of vanadium ions through PVDF-g-PSSA membranes on performances of vanadium redox flow batteries", J. Phys. Chem. B, 109, 20310 (2005). https://doi.org/10.1021/jp054092w
- X. Li, C. Zhao, H. Lu, Z. Wang, and H. Na, "Direct synthesis of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) proton exchange membranes for fuel cell application", Polym., 46, 5820 (2005). https://doi.org/10.1016/j.polymer.2005.04.067
- J. Roziere and D. J. Jones, "Non-fluorinated polymer materials for proton exchange membrane fuel cells", Annu. Rev. Mater. Res., 33, 503 (2003). https://doi.org/10.1146/annurev.matsci.33.022702.154657
- F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, "Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: Candidates fornew proton exchange memranes", J. Membr. Sci., 197, 231 (2002). https://doi.org/10.1016/S0376-7388(01)00620-2
- L. Coury, "Conductance measurements part 1: theory", Curr. Sep., 18, 91-96 (1999).
- K. Gong, Q. Fang, S. Gu, S. F. Y. Li, and Y. Yan, "Nonaqueous redox-flow batteries: Organic solvents, supporting electrolytes, and redox pairs", Energy & Environ. Sci., 8, 3515 (2015). https://doi.org/10.1039/C5EE02341F
- Q. Liu, A. E. S. Sleightholme, A. A. Shinkle, Y. Li, and L. T. Thompson, "Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries", Electrochem. Commun., 11, 2312 (2009). https://doi.org/10.1016/j.elecom.2009.10.006
- S.-H. Shin, Y. Kim, S.-H. Yun, S. Maurya, and S.-H. Moon, "Influence of membrane structure on the operating current densities of non-aqueous redox flow batteries: Organic-inorganic composite membranes based on a semi-interpenetrating polymer network", J. Power Source, 296, 245 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.045
- S. Maurya, S.-H. Shin, K.-W. Sung, and S.-H. Moon, "Anion exchange membrane prepared from simultaneous polymerization and quaternization of 4-vinyl pyridine for non-aqueous vanadium redox flow battery applications", J. Power Source, 255, 325 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.047
- D.-H. Kim, J.-S. Park, M. Choun, J. Lee, and M.-S. Kang, "Pore-filled anion-exchange membranes for electrochemical energy conversion applications", Electrochim. Acta, 222, 212 (2016). https://doi.org/10.1016/j.electacta.2016.10.041
- Y. Li, J. Sniekers, J. C. Malaquias, C. Van Goethem, K. Binnemans, J. Fransaer, and I. F. J. Vankelecom, "Crosslinked anion exchange membranes prepared from poly(phenylene oxide) (PPO) for non-aqueous redox flow batteries", J. Power Source, 378, 338 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.049
- E. Guler, R. Elizen, D. A. Vermaas, M. Saakes, and K. Nijmeijer, "Performance-determining membrane properties in reverse electrodialysis", J. Membr. Sci., 446, 266 (2013). https://doi.org/10.1016/j.memsci.2013.06.045
- D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.43
- J. Y. Lee, J. H. Kim, J. H. Lee, S. Kim, and S. H. Moon, "Morphologically aligned cation-exchange membranes by a pulsed electric field for reverse electrodialysis", Environ. Sci. Technol., 49, 8872 (2015). https://doi.org/10.1021/acs.est.5b01151
- J. F. Walther and N. Y. Skaneateles, "Process for production of electrical energy from the neutralization of acid and base in a bipolar membrane cell", US Patent 4,311,771, January 19 (1982).
- J.-H. Kim, J.-H. Lee, S. Maurya, S.-H. Shin, J.-Y. Lee, I. S. Chang, and S.-H. Moon, "Proof-of-concept experiments of an acid-base junction flow battery by reverse bipolar electrodialysis for an energy conversion system", Electrochem. Commun., 72, 157 (2016). https://doi.org/10.1016/j.elecom.2016.09.025
- F. Hanada, K. Hirayama, N. Ohmura, and S. Tanaka, "Bipolar membrane and method for its production", US Patent 5,221,455, June 22 (1993).
- R. Fu, T. Xu, G. Wang, W. Yang, and Z. Pan, "PEG-catalytic water splitting in the interface of a bipolar membrane", J. Colloid Interface Sci., 263, 386 (2003). https://doi.org/10.1016/S0021-9797(03)00307-2
- R. Q. Fu, Y. H. Xue, T. W. Xu, and W. H. Yang, "Fundamental studies on the intermediate layer of a bipolar membrane part IV. Effect of polyvinyl alcohol (PVA) on water dissociation at the interface of a bipolar membrane", J. Colloid Interface Sci., 285, 281 (2005). https://doi.org/10.1016/j.jcis.2004.11.050
- J. Balster, R. Sumbharaju, S. Srikantharajah, I. Punt, D. F. Stamatialis, V. Jordan, and M. Wessling, "Asymmetric bipolar membrane: A tool to improve product purity", J. Membr. Sci., 287, 246 (2007). https://doi.org/10.1016/j.memsci.2006.10.042
- M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, "A comprehensive review on PEM water electrolysis", Int. J. Hydrog. Energy, 38, 4901 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
- H. Ito, T. Maeda, A. Nakano, and H. Takenaka, "Properties of Nafion membranes under PEM water electrolysis conditions", Int. J. Hydrog. Energy, 36, 10527 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.127
- S. A. Grigoriev, P. Millet, S. V. Korobtsev, V. I. Porembskiy, M. Pepic, C. Etievant, C. Puyenchet, and V. N. Fateev, "Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis", Int. J. Hydrog. Energy, 34, 5986 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.047
- M. Faraj, M. Boccia, H. Miller, F. Martini, S. Borsacchi, M. Geppi, and A. Pucci, "New LDPE based anion-exchange membranes for alkaline solid polymeric electrolyte water electrolysis", Int. J. Hydrog. Energy, 37, 14992 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.012
- J. Hnat, M. Paidar, J. Schauer, J. Zitka, and K. Bouzek, "Polymer anion selective membranes for electrolytic splitting of water. Part I: Stability of ion-exchange groups and impact of the polymer binder", J. Appl. Electrochem., 41, 1043 (2011). https://doi.org/10.1007/s10800-011-0309-9
- N. Lee, D. T. Duong, and D. Kim, "Cyclic ammonium grafted poly (arylene ether ketone) hydroxide ion exchange membranes for alkaline water electrolysis with high chemical stability and cell efficiency", Electrochim. Acta, 271, 150 (2018). https://doi.org/10.1016/j.electacta.2018.03.117