DOI QR코드

DOI QR Code

Nano 및 Micro 크기의 Fe3O4 분말이 첨가된 열경화성 에폭시 접착제의 유도가열 및 접착 특성

Heating Behavior and Adhesion Property of Epoxy Adhesive with Nano and Micro Sized Fe3O4 Particles

  • Hwang, Ji-Won (DFC Co., Ltd.) ;
  • Im, Tae-Gyu (Department of Industrial Chemistry, Pukyong National University) ;
  • Choi, Seung-Yong (Department of Industrial Chemistry, Pukyong National University) ;
  • Lee, Nam-Kyu (Department of Industrial Chemistry, Pukyong National University) ;
  • Shon, Min-Young (Department of Industrial Chemistry, Pukyong National University)
  • 투고 : 2019.12.16
  • 심사 : 2020.03.02
  • 발행 : 2020.04.30

초록

구조용 일액형 에폭시 접착제에 나노 및 마이크로 크기의 Fe3O4 분말을 첨가하여 유도가열용 접착제를 제조하였고, 제조된 접착제를 이용하여 GFRP 피착재의 두께 및 Fe3O4 분말의 첨가량 변화에 따른 가열 성능을 평가하였다. 실험 결과, 접착제의 승온 거동이 유도 가열로 가열한 경우 오븐경화에 비해 GFRP 피착재의 두께에 영향을 작게 받는 것이 관찰되었으며 접착제 내의 Fe3O4 분말의 함량이 증가할수록 가열 속도와 전단 강도가 증가하는 경향을 나타냈다.

A study on the heating behavior and adhesion property of structural epoxy adhesive through induction heating have been conducted. An adhesive for induction heating was manufactured through mixing with nano and micro sized Fe3O4. From the results, it was observed that induction heating is less affected by adherend (GFRP) thickness than oven heating. The heating rate of Fe3O4 embedded epoxy adhesive using induction heating much higher than that of oven curing process and it is more appreciable when the contents of Fe3O4 increased. Furthermore, adhesion strength increased with increase of Fe3O4 particle contents.

키워드

참고문헌

  1. Fink, B.K., Mccullough, R.L., and Gillespie Jr., J.W., "A Local Theory of Heating in Cross-Ply Carbon Fiber Thermoplastic Composites by Magnetic Induction," Polymer Engineering and Science, Vol. 32, Issue 32, 1992, pp. 357-369.
  2. Kim, H., Yarlagadda, S., Gillespie, J.W., Shevchenko, N.B., and Fink, B.K., "A Study on the Induction Heating of Carbon Fiber Reinforced Thermoplastic Composites," Journal Advanced Composite Materials, Vol. 11, Issue 1, 2002, pp. 71-80. https://doi.org/10.1163/156855102753613309
  3. Yarlagadda, S., and Kim, H., "A Study on the Induction Heating of Conductive Fiber Reinforced Composites," Journal of Composite Materials, Vol. 36, Issue 4, 2002, pp. 401-421. https://doi.org/10.1177/0021998302036004171
  4. Riccio, A., Russo, A., Raimondo, A., Cirillo, P., and Caraviello, A., "A Numerical/experimental Study on the Induction Heating of Adhesives for Composite Materials Bonding," Materials Today Communications, Vol. 15, 2008, pp. 203-213. https://doi.org/10.1016/j.mtcomm.2018.03.008
  5. Frauenhofer, M., Kunz, H., and Kilger, K., "Fast Curing of Adhesives in the Field of CFRP," The Journal of Adhesion, Vol. 88, 2012, pp. 406-417. https://doi.org/10.1080/00218464.2012.660386
  6. Wasselynck, G., Trichet, D., Ramdane, B., and Fouladgar, J., "Microscopic and Macroscopic Electromagnetic and Thermal Modeling of Carbon Fiber Reinforced Polymer Composites," IEEE Transactions on Magnetics, Vol. 47, Issue 5, 2011, pp. 1114-1117. https://doi.org/10.1109/TMAG.2010.2073456
  7. Bae, D.H., Shin, P.H., Kwak, S.T., Moon, M.J., Shon, M.Y., Oh, S.T., and Kim, G.N., "Heating Behavior of Ferromagnetic Fe Particle-embedded Thermoplastic Polyurethane Adhesive Film by Induction Heating," Journal of Industrial and Engineering Chemistry, Vol. 30, 2015, pp. 92-97. https://doi.org/10.1016/j.jiec.2015.05.007
  8. Miller, K.J., Collier, K.N., Soll-Morris, H.B., Swaminathan, R., and McHenry, M.E., "Induction Heating of FeCo Nanoparticles for Rapid RF Curing of Epoxy Composites," Journal of Applied Physics, Vol. 105, 2009, 07E714. https://doi.org/10.1063/1.3073833
  9. Suwanwatana, W., Yarlagadda, S., Gillespie Jr., J.W., "Influence of Particle Size on Hysteresis Heating Behavior of Nickel Particulate Polymer Films," Composites Science and Technology, Vol. 66, 2006, pp. 2825-2836. https://doi.org/10.1016/j.compscitech.2006.02.033
  10. Zeisverger, M., Dutz, S., Muller, R., Hergt, R., Matoussevitch, N., and Bonnemann, H., "Metallic Cobalt Nanoparticles for Heating Applications," Journal of Magnetism and Magnetic Materials, Vol. 311, 2007, pp. 224-227. https://doi.org/10.1016/j.jmmm.2006.11.178
  11. Bae, D., Moon, M.J., Shon, M.Y., Oh, S.T., Kim, G.N., and Yun, D.W., "Study on the Heating Behavior of Ni-embedded Thermoplastic Polyurethane Adhesive Film via Induction Heating," The Journal of Adhesion, Vol. 93, Issue 12, 2017, pp. 964-979. https://doi.org/10.1080/00218464.2016.1194205
  12. Younes, A., Dilmi, N., Khorchef, M., Bouamer, A., Bacha, N.-E., and Zergoug, M., "Structural and Magnetic Properties of FeCuNi Nanostructured Produced by Mechanical Alloying," Applied Surface Science, Vol. 446, 2018, pp. 258-265. https://doi.org/10.1016/j.apsusc.2017.12.160
  13. Carbas, R.J.C., da Silva, L.F.M., and Critchlow, G.W., "Adhesively Bonded Functionally Graded Joints by Induction Heating," International Journal of Adhesion & Adhesives, Vol. 48, 2014, pp. 110-118. https://doi.org/10.1016/j.ijadhadh.2013.09.045
  14. Severijns, C., Teixeira de Greitas, S., and Poulis, J.A., "Susceptor-assisted Induction Curing Behavior of a Two Component Epoxy Paste Adhesive for Aerospace Applications," International Journal of Adhesion and Adhesives, Vol. 75, 2017, pp. 155-164. https://doi.org/10.1016/j.ijadhadh.2017.03.005
  15. Verna, E., Cannavaro, I., Brunella, V., Koricho, E.G., Belingardi, G., Roncato, D., Martorana, B., Lambertini, V., Neamtu, V.A., and Ciobanu, R., "Adhesive Joining Technologies Activated by Electro-magnetic External Trims," International Journal of Adhesion & Adhesives, Vol. 46, 2013, pp. 21-25. https://doi.org/10.1016/j.ijadhadh.2013.05.008