DOI QR코드

DOI QR Code

Transmit Power Control for Multi-Access Points Environment

다수 개의 엑세스 포인트 환경에서 전송전력 제어

  • 오창윤 (인하공업전문대학 정보통신과)
  • Received : 2020.03.27
  • Accepted : 2020.04.12
  • Published : 2020.04.30

Abstract

We investigate the transmit power control algorithm for multi-access points environment. Each terminal may transmit a signal to one of these access points. Each access point may receive a signal from desired terminals as well as interference from neighbor terminals. In this paper, a transmit power control algorithm is developed such that the total transmit power is minimized, while each terminal meets the target signal to interference ratio (SIR) requirement. In particular, the effect of increasing the number of access-points on the total transmit power consumption is analyzed. Based on this analysis, we propose a convergence guaranteed power control algorithm. We prove that the proposed iterative algorithm always converges to the target SIR. In addition, we show that the proposed algorithm optimizes the transmit power level. Simulation results show that the proposed algorithm guarantees convergence regardless of the number of access points. We also observed that increasing the number of access points reduces the total transmit power consumption.

다중 엑세스 포인트에서 적용을 위한 전송전력 알고리즘을 연구한다. 개별 단말은 여러 개의 엑세스 포인트 중에서 하나의 엑세스 포인트에 신호를 전송한다. 각각의 엑세스 포인트는 수신이 예정된 단말로 부터 신호를 수신하기도 하지만, 인접한 단말들로 부터 간섭도 수신한다. 본 논문에서는 각각의 단말에 요구되는 신호대 간섭비를 만족하면서 모든 단말들의 총 전송전력이 최소화되도록 전송전력 알고리즘을 제안한다. 특히, 엑세스 포인트 개수의 증가가 단말들이 소모하는 총 전송전력에 미치는 영향을 살펴본다. 이를 기반으로, 단말들의 총 전송전력을 최소화하는 반복적 알고리즘을 제안한다. 제안하는 알고리즘은 목표 신호대 간섭비에 항상 수렴함을 이론적 기법을 통해 증명한다. 또한, 본 논문에서 제안하는 알고리즘은 단말들이 소모하는 전송전력을 최적화함을 증명하도록 한다. 실험결과를 통해 다음과 같은 두 가지 사항, 1) 제안하는 전송전력 최적화 알고리즘은 엑세스 포인트 개수와 관계없이 목표로 하는 신호대 간섭비에 수렴하며, 이때 개별 단말들은 최적의 전송전력을 소모한다. 2) 통신시스템에 엑세스 포인트의 개수가 증가할수록 단말들이 소모하는 전송전력은 감소함을 확인하였다.

Keywords

References

  1. Barcelo, M., Correa, A., Vicario, J., and Morell, A. (2015). Joint Routing, Channel Allocation and Power Control for Real-Life Wireless Sensor Networks, IEEE Transactions on Emerging Telecommunications Technologies, 26(5), 945-956. https://doi.org/10.1002/ett.2783
  2. Cha, H. (2014). A Design of an Energy-Efficient Application Protocol for the Sensor Networks, Journal of the Korea Industrial Information Systems Research, 19(2), 23-30. https://doi.org/10.9723/jksiis.2014.19.2.023
  3. Choi, H. (2012). CUCE: Clustering Protocol using Node Connectivity and Node Energy, Journal of the Korea Industrial Information Systems Research, 17(4), 41-50. https://doi.org/10.9723/jksiis.2012.17.4.041
  4. Chung, S., and Joe, I. (2015). Intelligent Transmission Power Allocation for Distributed Beamforming in Wireless Sensor Networks, International Journal of Distributed Sensor Networks, 11(6), 1-10.
  5. Du, R., Ozcelikkale, A., Fischione C., and Xiao, M. (2018). Towards Immortal Wireless Sensor Networks by Optimal Energy Beamforming and Data Routing, IEEE Transactions on Wireless Communications, 17(8), 5338-5352. https://doi.org/10.1109/twc.2018.2842192
  6. Hermeto, R., Gallais, A., and Theoleyre, F. (2017). Scheduling for IEEE802.15.4-TSCH and Slow Channel Hopping MAC in Low Power Industrial Wireless Networks: A Survey, Computer Communications, 114, 84-105. https://doi.org/10.1016/j.comcom.2017.10.004
  7. Hwang, R. H., Wang, C. C., and Wang, W. B. (2017). A Distributed Scheduling Algorithm for IEEE 802.15.4e Wireless Sensor Networks, Computer Standards & Interfaces, 52, 63-70. https://doi.org/10.1016/j.csi.2017.01.003
  8. Hua, Q., and Lau, F. (2010). Joint Link Scheduling and Topology Control for Wireless Sensor Networks with SINR Constraints, Handbook of Research on Developments and Trends in Wireless Sensor Networks: From Principle to Practice, IGI Global, pp. 184-208.
  9. Kralevska, K., Vergados, D. J., Jiang, Y., and Michalas, A. (2018). Load Balancing Algorithm for Resource Allocation in IEEE 802.15.4e Networks, 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 675-680.
  10. Razali, S. M., Mamat, K., Abdul-Basit K., and Ali, F. H. M. (2014). Performance Enhancement of Wireless Sensor Network (WSN) with the Implementation of Hybrid ARQ (HARQ) and Transmission Power Control (TPC), 2014 IEEE Conference on Wireless Sensors (ICWiSE) , pp. 36-40.
  11. Son, B., and Kim, J. (2004). Energy Efficient Routing Protocol in Wireless Sensor Network, Journal of the Korea Industrial Information Systems Research, 9(2), 65-73.
  12. Yoo, S. (2012). A Software Framework for Verifying Sensor Network Operating and Sensing Algorithms, Journal of the Korea Industrial Information Systems Research, 17(1), 63-71. https://doi.org/10.9723/jksiis.2012.17.1.063
  13. Yates, R. (1996). A Framework for Uplink Power Control in Cellular Radio Systems, IEEE Journal on Selected Areas in Communications, 13(7), 1341-1347. https://doi.org/10.1109/49.414651
  14. Jayaprakasam, S., Rahim, S., and Leow, C. (2017). Distributed and Collaborative Beamforming in Wireless Sensor Networks: Classifications, Trends, and Research Directions, IEEE Communications Surveys & Tutorials, 19(4), 2092-2116. https://doi.org/10.1109/COMST.2017.2720690

Cited by

  1. 전송전력과 엑세스 포인트 선정 알고리즘: AT 링크와 TA 링크 vol.24, pp.8, 2020, https://doi.org/10.6109/jkiice.2020.24.8.1022