Abstract
In this paper, we consider a group testing (GT) framework which is to find a set of defective samples out of a large number of samples. To handle this framework, we propose a maximum product detection algorithm (MPDA) which is based on maximum a posteriori probability (MAP). The key idea of this algorithm exploits iterative detection to propagate belief to neighbor samples by exchanging marginal probabilities between samples and output results. The belief propagation algorithm as a conventional approach has been used to detect defective samples, but it has computational complexity to obtain the marginal probability in the output nodes which combine other marginal probabilities from the sample nodes. We show that the our proposed MPDA provides a benefit to reduce computational complexity up to 12% in runtime, while its performance is only slightly degraded compared to the belief propagation algorithm. And we verify the simulations to compare the difference of performance.