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1. Introduction 

Group Testing (GT) was introduced by 

Dorfman [1], and its application has been used 

in various fields for half a century [2]. GT 

began with a project to find all syphilis soldiers 

in the US Public Health service during World 

War II. At the time, syphilis inspection took 

blood samples of individual soldiers to check 

for syphilis infection. However, because the 

number of soldiers in the syphilis inspection 

was very large, the cost of the test was huge, 

and it took a lot of time to find a new test 

method [2]. Subsequently, it was first motivated 

by the development of the GT framework [1]. 

In the conventional GT, the syphilis 

inspection was performed using the following 

method. First, blood samples from several 

soldiers are mixed  in one pool to see if they 

react to syphilis source of infection. And when 

the result is positive, it means that at least one 

soldier was infected with syphilis. On the other 

hands, in the case of a negative, it can be 

confirmed that all blood samples used for the 

syphilis infection were not infected with the 

syphilis. This is because most soldiers are not 

infected with syphilis, and only a handful of 

soldiers have syphilis. So the GT problem is 

mainly dealt with the following two directions. 

First, it is about how to pick samples to be 

included in a pool. The second is to use a 

detection algorithm to find a set of defective 

samples out of a large number of samples. 

In this paper, the GT problem is clearly 

defined as follows. Let   be the number of 
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tests required to find  a set of defective sample 

when  samples of the  samples are 

defective. In this paper, we propose a 

maximum product detection algorithm (MPDA) 

using maximum a posteriori probability (MAP). 

And we see that the our proposed MPDA 

provides a benefit to reduce computational 

complexity, while its performance is only 

slightly reduced compared to a belief 

propagation algorithm which is a conventional 

approach. In addition, we show simulation 

results for both algorithms to compare how 

difference of performance between them.  

The organization of this paper is as follows. 

In Section 2, we investigate the related works 

in detection algorithms of GT problems. And  

the GT problem is defined in detail in this 

paper in Section 3. In addition, the description  

of the detection algorithm proposed in this 

paper is provided in Section 4, as well as we 

show the simulation results and compare other 

theoretic results. Finally, in Section 5 we 

conclude that we have obtained meaning 

results and findings.

2. Related Work

A number of detection algorithms for GT 

problems have been proposed since the 

detection algorithm was first introduced by 

Dorfman. This section aims to review the some 

detection algorithms proposed in the GT 

problems.

The detection algorithm to be reviewed first 

is a binary splitting algorithm [2]. This 

algorithm is basically called the optimal 

adaptive algorithm in GT. The binary splitting 

algorithm is to find defect samples less than or 

equal to  in  samples, and is summarized as 

follows according to the size of  and . 

At the initial step, in case of ≤ , to 

find  defective samples it is performed by 

individual testing. It means that individual 

testing is better than GT when there are many 

defective samples. Otherwise, set   

and  ⌊log⌋, respectively. At the 

second step, GT is performed by a set of 

samples with   size for every testing. Here 

when the result of this GT is negative, all 

samples in this pool are determined as normal. 

An then, reset samples with  size 

and perform GT as same as the first step. On 

the other hands, using binary search, one 

defective sample and the other normal samples 

 are again set as follows,  and 

.

The number of tests   for the generalized 

binary splitting algorithm with respect to   ,  

 and , is required as    , 

where in case high ,   converges to 

log  [2].  

Next, let us investigate a COMP 

(Combinatorial Orthogonal Matching Pursuit) 

algorithm [3]. This algorithm is a class of the 

nonadaptive GT algorithms. The COMP 

algorithm works as follows. First, each entry of 

the group matrix is assumed with the 

i.i.d.(independent and identically distributed) 

Bernoulli probability distribution with  the 

probability  for 1, and  for 0. The 

core idea of the detection algorithm is to 

combine the columns of the group matrix 

corresponding to the samples participated in a 

pool. As the conventional GT problems, the 

results are determined to be positive or 

negative depending on the existence of 

defective samples. The number of test  for 

the COMP algorithm with any constant    
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and that the average error probability is less 

then or equal , is as follows, 

≥ ln  [3].

Another algorithm that is a extended version 

of the COMP algorithm is as called DD 

(Definite Defectives) to vanish false positive 

error [4]. The performance of the DD 

algorithm improves that of the COMP 

algorithm. The detection method of the DD 

algorithm exploits useful attributes of the 

COMP algorithm. Note that the normal samples 

obtained from the COMP algorithm are surely 

detected without false negative error. 

Therefore the DD algorithm only generates 

false negatives compared to the COMP 

algorithm.

The SCOMP (Sequential COMP) algorithm is 

an algorithm that takes advantage of the fact 

that the DD algorithm does not cause errors 

until the last step [6]. All remaining samples are 

assumed to be normal. Let  be the set of 

samples detected to be defective. If the test 

contains at least one defective sample from the 

set , a positive result is obtained. Note that it 

cannot be said that the set of defective samples 

detected by the DD algorithm occurs all 

positive results. This means that test results 

that cannot be clearly identified have to 

contain one hidden defect sample. Simulation 

results using the SCOMP algorithm showed 

results close to the optimal ones [4]. The other 

results of adaptive and noisy GT problems are 

presented in [5]-[7].

3. Group Testing Framework

In this section, we define the GT framework 

in detail. Let  ⋯
 be the binary 

input vector with size  where ∈. If 

the th sample of  is defective, then we 

present as  , otherwise  . So all the 

entries of the binary input vector  are 

represented as  0 or 1. We assume in this paper 

that each entry of the vector  has the 

following i.i.d. Bernoulli probability distribution,

Pr   if    if   
         (1)

where   denotes the defective rate, and 

  is a dummy variable. 

The group matrix ∊× has   rows 

and  columns. For ∈   and 

∈  ,  if the th group includes th 

sample, the corresponding entry  of the  

group matrix  is represented as  , 

otherwise, we express as  . In other 

words, when the entry of the group matrix is  
 1, GT is performed including the th sample 

indicating the corresponding column [2].

The following describes the mathematical 

expression of GT in more detail. The binary 

input vector  and the group matrix  defined 

above are defined by the following GT:

⊕               (2)

where  is the result vector and  if the result 

of the th group is positive, then we say as 

 , otherwise it is 0. And the symbol ⊕ 

denotes logical operation with AND and OR. 

The following equation (3) shows a simple 

example of the mathematical expression of 

GT,⊕,
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
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From (3), the first entry of the result 

     is obtained as (1 1 1)⊕(0 1 0) = (1 

AND 0) OR (1 AND 1) OR (1 AND 0) = 1. It is 

positive. In the same manner, we calculate all 

the entries   of the output vector as a result of 
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the GT. As shown in the example, if at least 

one defective samples of the vector included in 

each group exist, the result is positive. This 

mathematical expression of GT takes 

advantage into easy handling states of , , 

and  in our proposed detection algorithm.

4. Detection of Defective Samples

4.1 Proposed Detection Algorithm

In this section, we proposes a Maximum 

Product detection algorithm (MPDA) for the GT 

problems. This MPDA is based on using MAP. 

Note that the GT problem of finding the 

optimal MAP solution is NP-hard. Although this 

argument is difficult to find the optimal 

solution in fact, many researchers have tried to 

find suboptimal approaches close to the 

optimal one. Among them, the performance of 

the belief propagation algorithm introduced by 

Mackey in [8] showed results close to the 

Shannon bounds in channel coding theory. 

To treat our proposed MPDA, we assume the 

following: Each sample ,   ⋯, has a 

priori probability of defective and normal state 

given by (1), under the system assumption that 

samples, group matrix, and result vector are 

independent with each other, the GT problem 

is to find the MAP combination  of samples 

given the observed output  of result vectors. 

This is formulated as

 argmaxPr

 argmax
 



Pr

           (4)

where the second equality comes from the 

independent assumption of priori samples. 

Using Bayes’ rule, the conditional probability 

Pr in (4) can be rewritten by where the

Pr 
╲ 

Pr

 
╲ 

PrPr

 
╲ 

  



Pr
  



Pr

     (5)

symbol ╲ refers to exclusion from a set, and 

independent assumptions lead to equality in 

(5). The aim of the proposed algorithm is to 

find the maximized marginal probability for 

each sample in (5). 

Next, we describe the key idea of the MPDA 

proposed in this paper. Before explaining our 

algorithm, the graphical representation of for 

one example of GT in (3) is introduced as 

shown in Figure 1. There are 3 samples, 

 and 3 outputs of GT, . Since 

the first row of  in (3) is (1 1 1), there exists 

3 edges between 3 samples, , and . In 

the same way, other edges between samples 

and outputs can be draw as shown in Figure 1.

Fig. 1. Graphical representation with 3 samples and 3 
output results for the group matrix   in the given 
example of (3).

Let      be the set of samples 

participating in the th group, and 

     be the set of groups 

participating in the th sample. We also use 

╲ to denote the set   excluded the 

th sample, and ╲ to denote the set   

excluded the th group. The MPDA proposed in 

this paper is mainly described as a process in 
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which two probabilities exchange information 

in each iteration. Note that we aim to find the 

maximum conditional probability for each 

sample as in the last line of (5). In other words, 

the two conditional probabilities, Pr and 

Pr, are exchanged with each other to 

maximize the posteriori probability. Let  be 

the upward message from the sample  to the 

output , and  be the downward message 

from the output  and the sample .  

Now the MPDA updates the messages  and 

 associated with each edge between a sample 

 and an output . There are 3 steps to 

estimate each input sample : initialization, 

update the messages  and , tentative 

decoding as to check if the constraint condition 

⊕ where  denotes the estimated state 

of the unknown samples. In the initialization 

step, we define the probability distribution of  

in (1), generate the group matrix  with  

random design, i.e., low-density parity check 

codes in [7], and obtain the result output vector 

 from the given  and . We aim to find the 

original input vector  by using known  and  

. In addition, the initial upward message  

can be obtained from the priori probability 

Pr  assuming that the downward 

messages for 0 and 1 are equally distributed.

Next we consider a downward message  

from an output  to a sample . In the 

conventional belief propagation algorithm [7], 

this message  is obtained as follows

 
   ⊕


′∈╲

′      (6)

In this step of our proposed MPDA, we 

reduce the complexity of computation for the 

message  by replacing summation to 

maximum operation. This is why taking 

maximum operation instead of summation 

allows us to easily obtain one single value 

without consideration of constraint condition 

such as  ⊕ at the output node. This 

variant has reduction of computational 

complexity, which results in lower 

performance than the conventional belief 

propagation algorithm. Despite this weakness, 

when using the algorithm in practice, a 

reduction in computational complexity is more 

significant.

Table 1. Maximum Product Detection Algorithm.

Algorithm 1: Maximum Product Detection Algorithm
Input: Priori probability Pr in (1)

Group matrix 
Result vector 

Output: Estimated 
Initialization:
Set the probability distribution: Pr
Put the initial message: ←Pr  

while   ⊕ or Maximum iterations do
1) Update the message :
←max ′∈╲′

2) Update the message :
←Pr   

′∈╲
′

3) Tentative decoding:
Pr  ←Pr  

∈


return Estimated 

To handle the downward message , we use 

the following equation instead of (6) 

max ′∈╲′     (7)

where constraint condition is satisfied as 

 ⊕.

And each upward message  can be written by

 Pr  
′∈╲

′      (8)

where the variable  uses for normalization of 

the total probability. Let Pr  Pr 
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be the posteriori probability for a sample . 

We finally determine a maximum probability 

for    or 1 as defined in (5),

PrPr 
∈
      (9)

Using (7) and (8), the proposed MPDA 

iteratively updates the messages  and , and 

check if the constraint condition is satisfied as 

⊕ . That is, during each iteration, the 

MPDA stops if the condition is met. Otherwise, 

the MPDA continues to the maximum iterations 

as set in advance. Table 1 shows a version of 

pseudo code for our proposed MPDA.

4.2 Simulation Results

In this section, we evaluate the performance 

of the MPDA for the GT frameworks. To this 

end, we set the simulation environment as 

follows: the defective samples are generated 

from the probability distribution (1) with  

  , and the group matrix comes from the 

low-density parity-check [8] with 5 constant 

weights. As shown in Table 1, we evaluate the 

MPDA with the number of iterations, i.e., 20 

and 50. In this paper, the length of  is 500, 

, and the simulation is performed. We 

evaluate the probability of failure for the 

detection performance of the GT frameworks.

Figure 2 shows the simulation results when 

there are 10 defective samples () out of 

500 samples (). As shown in Figure 2, 

the probability of failure is obtained according 

to the number of tests   in the GT 

frameworks. We see that the more the number 

of tests  , the lower the probability of failure, 

but, on the other hands, the probability of 

failure increases. In addition, in case of 

 and , the lower bound on the 

number of tests based on information-theoretic 

approach in [9] is 70. It is shown that the gap 

of the performance between our proposed 

MPDA and the belief propagation algorithm is 

very small. And Table 2 shows the runtime for 

both algorithms to compare the computational 

complexity when the number of maximum 

iterations is 20 and 50, respectively. The MPDA 

provides reduction of runtime up to 12% 

compared to the belief propagation algorithm. 

Table 2. Runtime (sec) of the belief propagation 
algorithm and our proposed MPDA.

No.
Iteration

Belief Prop.
Algorithm [8] MPDA

  
  

20 21.3 18.9

50 53.8 48.1

  
  

20 48.5 43.4

50 123.3 108.5

Fig. 2. Simulation results of the probability of failure 
with    and   compared to other 
results in [8] for the belief propagation algorithm 
and the bound [9] for the information-theoretic 
result.

5. Conclusion

In this paper, we consider the GT framework 

and also propose the MPDA for finding 

defective samples out of a set of large samples. 

The proposed detection algorithm is based on 



Maximum Product Detection Algorithm for Group Testing Frameworks   101

maximum a posteriori probability, and is 

performed so that the posteriori probability of 

the output signal is maximized by exchanging 

marginal probabilities between samples and 

output results. As a result, we showed that there 

is slightly small gap between the conventional 

belief propagation algorithm and the our 

proposed MPDA. However, it provides us to 

reduce the computational complexity up to 12% 

in the aspect of runtime of both algorithms.
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