DOI QR코드

DOI QR Code

Review of the CO2 Geological Storage Using Nanoparticle-stabilized CO2 Foam

나노입자기반 CO2 폼을 이용한 CO2 지중저장에 대한 기술적 고찰

  • Son, Han Am (Department of Energy Resources Engineering, Pukyong National University)
  • 손한암 (부경대학교 에너지자원공학과)
  • Received : 2020.01.13
  • Accepted : 2020.04.23
  • Published : 2020.04.28

Abstract

When CO2 foam is injected into the saline aquifer, the relative permeability of CO2 decreases and its viscosity increases, thereby reducing mobility in porous media and ultimately improving CO2 storge with enhanced sweep efficiency. In general, surfactants were used to fabricate CO2 foam. Recently, nanoparticles have been used to form stable foam than surfactant. This paper introduces CO2 storage technology using nanoparticle stabilized CO2 foam. If the surface of the hydrophilic nanoparticles is partially modified into a CO2-philic portion, the particles have an affinity for CO2 and water, thus forming a stable CO2 foam even in deep saline aquifers under high temperature and high salinity conditions, thereby it can be stored in the pores of the rock. In terms of economics, injection method using nanopaticle-stabilized CO2 foam is more expensive than the conventional CO2 injection, but it is estimated that it will have price competitiveness because the injection efficiency is improved. From an environmental point of view, it is possible to inject chemical substances such as surfactants and nanomaterials into aquifers or reservoirs for specific purposes such as pollutant removal and oil production. However, some studies have shown that nanoparticles and surfactants are toxic to aquatic animals, so environmentally proven substances should be used. Therefore, further research and development will be needed to study the production and injection of nanoparticle-stabilized CO2 foam that are environmentally safe and economically reasonable.

이산화탄소(CO2)를 대염수층에 폼 상태로 주입할 경우 그대로 주입했을 때보다 CO2의 상대투과도가 감소하고 점성도가 증가하여 유동도가 감소한다. 이로 인해 대염수층과의 CO2와의 접촉효율이 증가하면서 궁극적으로 CO2 저장효율이 향상된다. 일반적으로 CO2 폼 형성을 위해서 계면활성제를 사용하였는데, 최근에는 계면활성제만을 사용했을 때보다 안정적인 폼 형성을 위해서 나노입자를 이용한 연구가 많이 수행되고 있다. 이 논문에서는 나노입자 기반 CO2 폼을 이용한 CO2 저장기술에 대해서 소개하였다. 친수성 나노입자의 일부표면을 CO2 친화적인 부분으로 개질하면 입자는 CO2와 물에 양친성을 나타내므로 고온, 고염도 조건의 심부 대염수층에서도 폼은 상대적으로 안정적인 상태를 유지할 수 있다. 경제적인 측면에서 나노기반 CO2 폼 주입공법은 일반적인 CO2 주입보다 비용이 증가하지만 주입 효율성이 향상되므로 가격 경쟁력이 있을 것으로 추정된다. 환경적 측면에서 살펴보자면 세계적으로 오염물질 제거, 석유생산 등 특수한 목적을 위해 대수층이나 저류층에 계면활성제나 나노물질 등의 화학물질 주입이 가능한 상황이다. 그러나 일부 연구에 의하면 나노입자나 계면활성제에는 수생동물에 영향을 줄 수 있는 독성이 있는 것으로 알려져 있기에 환경적 검증된 물질을 사용해야 할 것이다. 따라서 향후에도 추가적인 연구개발을 통해 환경적으로도 안전하면서도 경제적으로도 합리적인 나노기반 CO2 폼 제조 및 주입에 대한 연구가 필요할 것이다.

Keywords

References

  1. Alzobai, S., Lotfollahi, M., Kim, I., Johnston, K.P. and DiCarlo, D.A. (2017) Carbon dioxide-in-brine foams at high temperatures and extreme salinities stabilized with silica nanoparticles. Energy & Fuels, v.31, p.10680-10690. https://doi.org/10.1021/acs.energyfuels.7b01814
  2. Babaei M. and Copty, N.M. (2019) Numerical modelling of the impact of surfactant partitioning on surfactant enhanced aquifer remediation. J. Contam. Hydro., v.221, p.69-81. https://doi.org/10.1016/j.jconhyd.2019.01.004
  3. Baran, J.R., Wade, W.H., Weerasooriya, V. and Pope, G.A. (1998) An overview of surfactant enhanced aquifer remediation. In Lagaly, C. (ed.) Horizons 2000 - aspects of colloid and interface science at the turn of the millenium. Progress in Colloid & Polymer Sciencece, Steinkopff, p.74-84.
  4. Batot G., Fleury, M. and Nabzarm L. (2017) Reducing $CO_2$ flow using foams. Energy Procedia. v.114, p.4129-4139. https://doi.org/10.1016/j.egypro.2017.03.1553
  5. Belhaij, A. and Al-Mahdy, O. (2015) Foamability and foam stability of several surfactants solutions: the role of screening and flooding. J. Petrol Environ. Biotechnol., v.6, p.6-15.
  6. Bentham, M. and Kirby, G. (2005) $CO_2$ storage in saline aquifers. Oil Gas Sci. Technol., v.60, p.559-567. https://doi.org/10.2516/ogst:2005038
  7. Chen, Y., Elhag, A.S., Cui, L., Worthen, A.J., Reddy, P.P., Noguera, J.A., Ou, A.M., Ma, K., Puerto, M., Hirasaki, G.J., Nguyen, Q.P., Biswal, S.L and Johnston, K.P. (2015) $CO_2$-in-water foam at elevated temperature and salinity stabilized with a nonionic surfactant with a high degree of ethoxylation. Ind. Eng. Chem. Res., v.54, p.4252-4263. https://doi.org/10.1021/ie503674m
  8. Civan, F. (2000) Reservoir formation damage: fundamentals, modeling, assessment and migration, Gulf Publishing Company, Houston, Texas.
  9. Clark, J.A. and Santiso, E.E. (2018) Carbon sequestation through $CO_2$ foam-enhanced oil recovery:a green chemistry perspective. Engineeing, v.4, p.336-342.
  10. Godec, M., Koperna, G. and Gale, J. (2014) $CO_2$-ECBM: a review of its status and global potential. Energy Procedia, v.63, p.5858-5869. https://doi.org/10.1016/j.egypro.2014.11.619
  11. Guo, F., Aryana, S.A., Wang, Y., McLanghlin, J.F. and Coddingto, K. (2019) Enhancement of storage capacity of $CO_2$ in megaporous saline aquifurs using nanoparticlestabilized $CO_2$ foam. Int. J. Green. Gas Con., v.87, p.134-141. https://doi.org/10.1016/j.ijggc.2019.05.024
  12. Hu, X., Yutkin, M.P., Wu, J., Prausnitz, J.M. and Radke, C.J. (2019) Calcium ion bridging of aqueous carboxylates onto silica: implications for low-salinity waterflooding. Energy & Fuels, v.33, p.127-134. https://doi.org/10.1021/acs.energyfuels.8b03366
  13. IEAGHG (2015) Review of offshore monitoring for CCS projects.
  14. Jang, H., Lee, W. and Lee, J. (2018) Nanoparticle dispersion with surface-modified silica nanoparticles and its effect on the wettability alteration of carbonate rocks. Colloid. Surface. A, v.554, p.261-271. https://doi.org/10.1016/j.colsurfa.2018.06.045
  15. Jeong, G., Huh, D., Ki, S. and Park, Y. (2017) Relative permeability characteristics for $CO_2$ and brine in insitu core analysis. J. Korean Soc. Miner. Energy Resour. Eng., v.54, p.655-663. https://doi.org/10.12972/ksmer.2017.54.6.655
  16. Jones, E.H. and Su, C. (2014) Tansport and retention of zinc nanoparticles in porous media: effects of natural organic matter versus natural organic ligands at circumnentral pH. J. Hazard. Mater., v.275, p. 79-88. https://doi.org/10.1016/j.jhazmat.2014.04.058
  17. Kaminsky, R.D., Wattenbarger, R.C., Lederhos, J.P. and Leonardi, S.A. (2010) Viscous oil recovery using solids-stabilized emulsions. SPE-135284MS. Conference paper presented at the SPE Annual Technical Conference and Exhibition, SPE, Florence, Italy.
  18. Kim, I.Y. Joachim, E., Choi, H. and Kim, K. (2015) Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine, v.11, p.1407-1416. https://doi.org/10.1016/j.nano.2015.03.004
  19. Kim, I., Worthen, A.J., Johnston, K.P., DiCarlo, D.A. and Huh, C. (2016) Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams. J. Nanopart. Res., v.18, p.1-12. https://doi.org/10.1007/s11051-015-3308-7
  20. Kwon (2018) Demonstration-scale offshore $CO_2$ storage project in the Pohang basin, Korea. J. Eng. Geol., v.28, p.133-160.
  21. Lee, Y.S., Park, Y.C., Kwon, S.I. and Sung, W.M. (2008) The feasility study for $CO_2$ sequestration into deep saline aquifer at Gorae-v structure in Korea. J. Korean Soc. Miner. Energy Resour. Eng., v.45, p.381-393.
  22. Liu, N. (2015) Nanopartilce-stabilized $CO_2$ foam for $CO_2$ EOR application. DOE project report (DE-FE-0005979), U.S. Department of Energy, 116p.
  23. Metin, C.O., Lake, L.W., Miranda, C.R. and Nguyen, Q.P. (2010) Stability of aqueous silica nanoparticle dispersions under subsurface conditions. J. Nanopart. Res., v.13, p.839-850. https://doi.org/10.1007/s11051-010-0085-1
  24. Nath, F. and Xiao, C. (2017) Charactering foam-based frac fluid using rheological model to investigate the fracture propagation and proppant transport in Eagle ford shale formation. SPE 187527MS. Conference paper presented at the SPE Eastern Regional Meeting Oil, Lexington, Kentucky, October 4-6.
  25. Nguyen, P., Fadaeim H. and Sinton, D. (2014) Pore-scale assessment of nanoparticle-stabilized $CO_2$ foam for enhanced oil recovery. Energy & Fuels, v.28, p.6221-6227. https://doi.org/10.1021/ef5011995
  26. Otterstedt J.E. and Brandreth, D.A. (1998) Smoall particles technology, Plenum Press, New York and London, 500p.
  27. Park, J., Lee, M. and Wang, S. (2013) Study on the geochemical weathering process of sandstones and mubstones in Pohang basin at $CO_2$ storage condition, Econ. Environ. Geol., v.46, p.221-234. https://doi.org/10.9719/EEG.2013.46.3.221
  28. Park, Y.C., Kim, S. Lee, J.H. and Shinn, Y.J. (2019) Effect of reducing irreducible water saturation in a neer-well region on $CO_2$ injectivity and storage capacity. Int. J. Green. Gas Con., v.86, p.134-145. https://doi.org/10.1016/j.ijggc.2019.04.014
  29. Patil, P.D, Knight, T., Katiyar, A. and Vanderwal, P., Scherlin, J., Rozowski, P., Ibrahim, M., Sridhar, G.B., Nguyen, Q.P. (2018) $CO_2$ foam field pilot test in sandstone reservoir: complete analysis of foam pilot response. SPE 190312MS. Conference paper presented at the SPE Improved Oil Recovery, Tulsa, Oklahoma, April 14-18.
  30. Perera, M.S.A., Gamage, R.P., Rathnaweera, T.D., Ranathunga, A.S., Koay, A. and Choi, X. (2016) A review of $CO_2$-enhanced oil recovery with a simulated sensitivity analysis. Energies, v.9, p.481-502. https://doi.org/10.3390/en9070481
  31. Risal, A.R., Mana, M.A., Yekeen, N., Azli, N.B., Samin, A.M. and Tan, X.K., (2019) Experimental investigation of enhancement of carbon dioxide foam stability, pore plugging, and oil recovery in the presence of silica nanoparticle. Pet. Sci., v.16, p.344-356. https://doi.org/10.1007/s12182-018-0280-8
  32. San J., Wang, S., Yu, J., Liu, N. and Lee, R. (2017) Nanoparticle-stabilized carbon dioxide foam used in enhanced oil recovery : effect of different ions and temperatures. SPE Journal, v.22, p.1416-1423. https://doi.org/10.2118/179628-PA
  33. Shinn, Y.J., Yoo, D.G., Hwang, S., Park, Y.C. and Huh, D.G. (2012) A preliminary screening of $CO_2$ geological storage in Ulleung basin. Korea. J. Korean Soc. Miner. Energy Resour. Eng., v.49, p.47-58.
  34. Singh, R. and Mohanty, K.K. (2017) Nanoparticle-stabilized foams for high-temperature, high-salinity oil reservoirs. SPE-187165MS. Conference paper presented at the SPE Annual Technical Conference and Exhibition, SPE, San Antonio, Texas, October 9-11.
  35. Sweatman, R., Crookshank, S. and Edman, S. (2011) Outlook and technologied for offshore $CO_2$ EOR/CCS projects. OTC 21984. Conference paper presented at the Offshore Technology Conference, Houston, Texas, May 2-5.
  36. Vann A., Murrill B.J. and Tiemann, M. (2014) Hydraulic fracturing: selected legal issues. CRS Report.
  37. Vitoonkijvanich, S., Alsofi, A.M. and Blunt, M.J. (2015) Design of foam-assisted carbon dioxide storage in a North Sea aquifer using streamline-based simulation, Int. J. Greenh. Gas Contol., v.33, p.113-121. https://doi.org/10.1016/j.ijggc.2014.11.022
  38. Wang, S., Kim, J. and Lee, M. (2016) Measurement of the sc$CO_2$ storage ratio for the $CO_2$ reservoir rocks in Korea. Energy Procedia, v.97, p.342-347. https://doi.org/10.1016/j.egypro.2016.10.015
  39. Xiao, C., Balasubramanian, S.N. and Clapp, L.W. (2017) Rheology of viscous $CO_2$ foams stbilized by nanoparticles under high pressure. Ind. Eng. Chem. Res., v.56, p.8340-8348. https://doi.org/10.1021/acs.iecr.7b01404
  40. Yu, J., An, C., Mo, D., Liu, N. and Lee, R. (2012) Foam mobility control for nanoparticle-stabilized $CO_2$ foam. SPE-129925MS. Conference paper presented at the SPE Improved Oil Recovery Coference, SPE, Tulsa, Oklahoma, April 24-28.
  41. Zhang, C., Li, Z., Sun, Z., Wang, P., Wang, S. and Liu, W. (2016) $CO_2$ foam properties and the stabilizing mechanism of sodium bis(2-ethylhexyl)-sulfosuccinate and hydrophobic nanoparticle mixtures, Soft Mater, v.12, p.946-956. https://doi.org/10.1039/C5SM01408E