DOI QR코드

DOI QR Code

Analysis of Biological Activities and Functional Components in Different Parts of Asparagus

아스파라거스 부위별 유효성분 및 생리활성 분석

  • Kwon, Soon-Bae (Agro-food Research Institute, Gangwondo Agricultural Research and Extension Services (ARES)) ;
  • Kwon, Hye-Jeong (Agro-food Research Institute, Gangwondo Agricultural Research and Extension Services (ARES)) ;
  • Jeon, Shin-Jae (Horticulture Research Division, Gangwondo ARES) ;
  • Seo, Hyun-Taek (Wild Vegetable Research Institute, Gangwondo ARES) ;
  • Kim, Hee-Yeon (Agro-food Research Institute, Gangwondo Agricultural Research and Extension Services (ARES)) ;
  • Lim, Jae-Gil (Agro-food Research Institute, Gangwondo Agricultural Research and Extension Services (ARES)) ;
  • Park, Ji-Seon (Agro-food Research Institute, Gangwondo Agricultural Research and Extension Services (ARES))
  • 권순배 (강원도농업기술원 농식품연구소) ;
  • 권혜정 (강원도농업기술원 농식품연구소) ;
  • 전신재 (강원도농업기술원 원예연구과) ;
  • 서현택 (강원도농업기술원 산채연구소) ;
  • 김희연 (강원도농업기술원 농식품연구소) ;
  • 임재길 (강원도농업기술원 농식품연구소) ;
  • 박지선 (강원도농업기술원 농식품연구소)
  • Received : 2019.10.09
  • Accepted : 2019.11.27
  • Published : 2020.02.29

Abstract

In this study, various constituents and biological activities of different parts of asparagus were analyzed and compared. The Ca content was high in the leaves, K was significantly high in the top 25 cm of the spear, and Fe and Na were significantly high in the roots. The ascorbic acid, rutin, total polyphenol, and total flavonoid contents were high in the leaves, and the asparagine and glutathione contents were significantly high in the top 25 cm of the spear and roots, respectively. The bottom 5 cm of the spear had the highest saponin content compared with all other parts. The DPPH and ABTS radical scavenging activities were the highest in the leaves. The bottom 5 cm of the spear had the highest α-amylase inhibitory activity, whereas the stem showed the highest anti-inflammatory activity. These results suggest that the usually inedible parts of asparagus may be highly valuable as high-quality functional components owing to their antioxidative and anti-inflammatory activities.

본 연구에서는 아스파라거스의 부위별 비타민 C, 루틴, 사포닌, 글루타티온, 아스파라긴산, 총 페놀함량, 항산화 활성(DPPH radical 소거능, ABTS radical 소거능), α-amylase 저해활성, Nitric oxide(NO) 생성량의 효과를 측정하였다. 분석한 결과 아스파라거스는 부위별로 성분함량이 다르게 관찰되었는데 Ca 과 Mg, Mn은 잎에서 높았고, K은 순 상부 25 cm에서 유의적으로 높았다. 뿌리에서는 Fe과 Na이 유의적으로 높았다. 비타민 C과 루틴, 총 폴리페놀 함량, 총 플라보노이드 함량은 잎에서 많았으며, 아스파라긴과 글루타티온은 각각 뿌리와 순 상부 25 cm에서 유의적으로 높음을 확인할 수 있었다. 특히, 순 하부 5 cm 부위에는 사포닌 함량(12.42%)이 다른 부위보다 높음을 확인할 수 있었다. 아스파라거스 잎의 DPPH, ABTS radical 소거능은 1.0 mg/mL 농도에서 각각 44.52, 15.58%로 줄기(23.41, 8.10%), 뿌리(18.57, 2.92%), 순 하부 5 cm (10.35, 7.16%), 순 상부 25 cm (8.14, 10.33%)에 비해 높은 항산화 활성을 확인하였다. 부위별 α-amylase에서는 순하부 5 cm (79.16%)가 다른 부위보다 저해능이 높았고, 순 하부 5 cm (12.93 μM), 순 상부 25 cm (12.10 μM), 뿌리(11.68 μM), 잎(10.43 μM), 줄기(9.70 μM) 순으로 LPS 처리군에 비해 NO 생성이 유의하게 저해되었다(p<0.001). 본 연구를 통해 아스파라거스의 부위에 따른 품질 특성과 항산화 활성을 비교하였다. 국내에서는 순 25 cm만을 제외한 나머지 부위들은 농가에서 부산물로 버려진다. 줄기와 뿌리는 다른 부위보다 아스파라긴함량이 높았고, 유통상의 이유로 버려지는 순 5 cm에는 사포닌함량이 많았다. 또한, 잎에는 다른 부위보다 총 폴리페놀 함량, 비타민 C와 루틴이 다량 함유되어 있어 생리활성 소재로 개발 가치가 높을 것으로 판단된다. 추후, 생리활성물질이 많은 다른 부위들의 활용대안 모색이 필요할 것으로 사료된다.

Keywords

References

  1. Adouni K, Chahdoura H, Mosbah H, Santos-Buelga C, Gonzlez-Params A.M, Ciudad-Mulero M. Revalorization of wild Asparagus stipularis Forssk. as a traditional vegetable with nutritional and functional properties. Food Funct. 9: 1578-1586 (2018) https://doi.org/10.1039/C7FO01687E
  2. Amel H, Sara JC, Raja SB, Rabeb T, Sonia Z, Roco RA, Ana JA, Mounir K, Mokhtar L, Najoua KB, Rafael GB. The phytochemical and bioactivity profiles of wild Asparagus albus L. plant. Food Res. Int. 99: 720-729 (2017) https://doi.org/10.1016/j.foodres.2017.06.027
  3. AOAC. Official Method of Analysis of AOAC 18th ed. Method 998.12. Association of Official Analytical chemists, Arlington, VA, USA(2010)
  4. Cha JY, Cho YS. Biofunctional activities of citrus flavonoids. J. Korean Soc. Agric. Chem. Biotechnol. 44: 122-128 (2001)
  5. Che L, Li W, Jin Q, Song H. Effect of color, thickness and part on free amino acid contents in asparagus. Food Sci. 34: 65-68 (2013)
  6. Chin CK, Garrison SA, Functional elements from asparagus for human health. Acta Hort. 776: 219-225 (2008) https://doi.org/10.17660/actahortic.2008.776.27
  7. Chitrakar B, Zhang M, Adhikari B. Asparagus (Asparagus officinalis): Processing effect on nutritional and phytochemical composition of spear and hard-stem byproducts. Trends Food Sci. Technol. 93: 1-11 (2019) https://doi.org/10.1016/j.tifs.2019.08.020
  8. Chua LS. A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacol. 150: 805-817 (2013) https://doi.org/10.1016/j.jep.2013.10.036
  9. Custdio L, Ferreira AC, Pereira H, Silvestre L, Vizetto-Duarte C, Barreira L, Varela J. The marine halophytes Carpobrotus edulis L. and Arthrocnemum macrostachyum L. are potential sources of nutritionally important PUFAs and metabolites with antioxidant, metal chelating and anticholinesterase inhibitory activities. Bot. Mar. 55: 281-288 (2012)
  10. Deli J, Matus Z, Tth G. Carotenoid composition in the fruits of Asparagus officinalis. J. Agric. Food Chem. 48: 2793-2796 (2000) https://doi.org/10.1021/jf991243h
  11. Demirkol O, Adams C, Ercal N. Biologically important thiols in various vegetables and fruits. J. Agric. Food Chem. 52: 8151-8154 (2004) https://doi.org/10.1021/jf040266f
  12. Denton OA, Schippers R, Oyen L. Plant Resources of Tropical Africa 2. Vegetables. Backhuys Publishers, Wageningen, Netherlands. 94-96 (2004)
  13. Fuentes-Alventosa JM, Jaramillo-Carmona S, Rodrguez-Gutirrez G, Guilln-Bejarano R, Jimnez-Araujo A, Fernndez-Bolaos J, Rodrguez-Arcos R. Preparation of bioactive extracts from asparagus by-product. Food Bioprod. Process. 91: 74-82 (2013) https://doi.org/10.1016/j.fbp.2012.12.004
  14. Hatfield DL, Berry MJ, Gladyshev VN. Selenium: Its Molecular Biology and Role in Human Health. Springer Science & Business Media. LLC., New York, USA. pp 598 (2012)
  15. Huang X, Kong L. Steroidal saponins from roots of Asparagus officinalis. Steroids 71: 171-176 (2006) https://doi.org/10.1016/j.steroids.2005.09.005
  16. Jang DS, Cuendet M, Fong HHS, Pezzuto JM, Kinghorn AD. Constituents of Asparagus officinalis evaluated for inhibitory activity against cyclooxygenase-2. J. Agric. Food Chem. 52: 2218-2222 (2004) https://doi.org/10.1021/jf0305229
  17. Jashni HK, Jahromi HK, Ranjbary AG, Jahromi ZK, Kherameh ZK. Effects of aqueous extract from Asparagus officinalis L. roots on hypothalamic-pituitary-gonadal axis hormone levels and the number of ovarian follicles in adult rats. Int. J. Reprod. BioMed. 14: 75-80 (2016) https://doi.org/10.29252/ijrm.14.2.75
  18. Kawaguchi K, Mizuno T, Aida K, Uchino K. Hesperidin as an inhibitor of lipases from porcine pancreas and pseudomonas. Biosci. Biotechnol. Biochem. 61: 102-104 (1997) https://doi.org/10.1271/bbb.61.102
  19. Kim HY, Cho EK, Kang SH, Bae JM, Choi YJ. ${\alpha}$-Glucosidase, tyrosinase, and elastase inhibitory effects of enzymatic extracts from Ecklonia cava and its alcohol metabolizing activity. J. Life Sci. 22: 751-759 (2012) https://doi.org/10.5352/JLS.2012.22.6.751
  20. Kim JS, Shim IS, Kim MJ. Glutathione content in various seedling plants, vegetables, and the processed foods. Korean J. Food Sci. Technol. 41: 592-596 (2009)
  21. Lee BB, Park SR, Han CS, Han DY, Park E, Park HR, Lee SC. Antioxidant activity and inhibition activity against ${\alpha}$-amylase and ${\alpha}$-glucosidase of Viola mandshurica extracts. J. Korean Soc. Food Sci. Nutr. 37: 405-409 (2008) https://doi.org/10.3746/jkfn.2008.37.4.405
  22. Lee EJ, Yoo KS, Patil BS. Development of rapid HPLC-UV method for simultaneous quantification of protodioscin and rutin in white and green asparagus spears. J. Food Sci. 75: 705-709 (2010)
  23. Lee JW, Lee JH, Yo IH, Gorinstein S, Bae JH, Ku YG. Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L. Plant Foods Hum. Nutr. 69: 175-181 (2014) https://doi.org/10.1007/s11130-014-0418-9
  24. Liang XL, Wang XL, Li Z, Hao QH, Wang SY. Improved in vitro assays of superoxide anion and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity of isoflavones and isoflavone metabolites. J. Agric. Food Chem. 58: 11548-11552 (2010) https://doi.org/10.1021/jf102372t
  25. Lim CS, Li CY, Kim YM, Lee WY, Rhee HI. The inhibitory effect of Cornus walteri extract against ${\alpha}$-amylase. J. Korean Soc. Appl. Biol. Chem. 48: 103-108 (2005)
  26. Muruganandan S, Garg H, Lal J, Chandra S, Kumar D. Studies on the immunostimulant and antihepatotoxic activities of Asparagus racemosus root extract. J. Appl. Res. Med. Aromat. 22: 4952 (2000)
  27. Natural medicines. USA. Avaliable from: https://naturalmedicines.therapeuticresearch.com/. Accessed Aug. 20, 2019
  28. Negi JS, Singh P, Joshi GP, Rawat MS, Bisht VK. Chemical constituents of Asparagus. Pharm. 4: 215-220 (2010)
  29. Papadopoulou P, Siomos A, Dogras C. Comparison of textural and compositional attributes of green and white asparagus produced under commercial conditions. Plant Foods Hum. Nutr. 58: 1-9 (2003) https://doi.org/10.1023/B:QUAL.0000040349.75894.40
  30. Park MH, Choi BG, Lim SH, Kim KH, Heo NK, Yu SH, Kim JD, Lee KJ. Analysis of general components, mineral contents, and dietary fiber contents of Synurus deltoides. J. Korean Soc. Food Sci. Nutr. 40: 1631-1634 (2011) https://doi.org/10.3746/jkfn.2011.40.11.1631
  31. Park YH, Lim SH, Kim HY, Park MH, Lee KJ, Kim KH, Kim YG, Ahn YS. Biological activities of extracts from flowers of Angelica gigas Nakai. J. Korean Soc. Food Sci. Nutr. 40: 1079-1085 (2011) https://doi.org/10.3746/jkfn.2011.40.8.1079
  32. Pellegrini N, Serafini M, Colombi B, del Rio D, Salvatore S, Bianchi M, Brighenti F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 133: 2812-2819 (2003) https://doi.org/10.1093/jn/133.9.2812
  33. Rural Development Administration (RDA). Avaliable from: http://www.nongsaro.go.kr. Accessed May. 8, 2019a.
  34. Rural Development Administration (RDA). Avaliable from: http://koreanfood.rda.go.kr. Accessed Aug. 20, 2019b.
  35. Shao Y, Chin CK, Ho CT, Ma W, Garrison SA, and Huang MT. Antitumor activity of the crude saponins obtained from asparagus. Cancer Lett. 104: 31-36 (1996) https://doi.org/10.1016/0304-3835(96)04233-4
  36. Shao Y, Poobrasert O, Kennelly EJ, Chin CK, Ho CT, Huang MT, Garrison SA, Cordell GA. Steroidal saponins from Asparagus officinalis and their cytotoxic activity. Planta Med. 63: 258-262 (1997) https://doi.org/10.1055/s-2006-957667
  37. Shou S, Lu G, Huang X. Seasonal variations in nutritional components of green asparagus using the mother fern cultivation. Sci. Hort. 112: 251-257 (2007) https://doi.org/10.1016/j.scienta.2006.12.048
  38. Singh GK, Garabadu D, Muruganandam A, Joshi VK, Krishnamurthy S. Antidepressant activity of Asparagus racemosus in rodent models. Pharmacol. Biochem. Behav. 91: 283-290 (2009) https://doi.org/10.1016/j.pbb.2008.07.010
  39. Singleton VL, Orthofer R, Amuela-Raventos RM. Analysis of total phenol and other oxidation substrates and antioxidants by means folin-ciocalteu reagent. Method. Enzymol. 299: 152-178 (1999) https://doi.org/10.1016/S0076-6879(99)99017-1
  40. Slatnar A, Mikulic-Petkovsek M, Stampar F, Veberic R, Horvat J, Jakse M. Sircelj H. Game of tones: Sugars, organic acids, and phenolics in green and purple asparagus (Asparagus officinalis L.) cultivars. Turk. J. Agric. For. 42: 55-66 (2018) https://doi.org/10.3906/tar-1707-44
  41. Solana M, Boschiero I, Dall'Acqua S, Bertucco A. A comparison between supercritical fluid and pressurized liquid extraction methods for obtaining phenolic compounds from Asparagus officinalis L. J. Supercrit. Fluids 100: 201-208 (2015) https://doi.org/10.1016/j.supflu.2015.02.014
  42. Thomson Healthcare (Firm). PDR for Herbal Medicines. 4th ed. Thomson Pdr. Montvale. NJ. USA. pp. 55-56 (2007)
  43. Tsushida T, Suzuki M, Kurogi M. Evaluation of antioxidant activity of vegetable extracts and determination of some active compounds. J. Jpn. Soc. Food Sci. Technol. 41: 611-618 (1994) https://doi.org/10.3136/nskkk1962.41.611
  44. United States Department of Agriculture (USDA). Avaliable from: http://ndb.nal.usda.gov/ndb/foods. .Accessed April. 1, 2018.
  45. Visavadiya NP, Narasimhacharya AV. Asparagus root regulates cholesterol metabolism and improves antioxidant status in hypercholesteremic rats, Evid Based. Complement. Alternat. Med. 6: 219-226 (2009) https://doi.org/10.1093/ecam/nem091
  46. Wang J, Liu Y, Zhao J, Zhang W, Pang X. Saponins extracted from by-product of Asparagus officinalis L. suppresses tumour cell migration and invasion through targeting Rho GTPase signaling pathway. J. Sci. Food Agric. 93: 1492-1498 (2013) https://doi.org/10.1002/jsfa.5922
  47. Wang MF, Tadmor Y, Wu QL, Chin CK, Garrison SA, Simon JE. Quantification of protodioscin and rutin in asparagus shoots by LC/MS and HPLC methods. J. Agric Food. Chem. 51: 6132-6136 (2003) https://doi.org/10.1021/jf0344587
  48. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555-559 (1999) https://doi.org/10.1016/S0308-8146(98)00102-2
  49. Zhong C, Jiang C, Xia X, Mu T, Wei L, Lou Y, Bi X. Antihepatic fibrosis effect of active components isolated from green asparagus (Asparagus officinalis L.) involves the inactivation of hepatic stellate cells. J. Agric. Food Chem. 63: 6027-6034 (2015) https://doi.org/10.1021/acs.jafc.5b01490