DOI QR코드

DOI QR Code

Biofilm Formation Characteristics of Major Foodborne Pathogens on Polyethylene and Stainless Steel Surfaces

  • Kim, Hyeong-Eun (Business Investment Support Department, The Food Industry Promotional Agency of Korea) ;
  • Kim, Yong-Suk (Department of Food Science and Technology, Jeonbuk National University)
  • Received : 2020.03.19
  • Accepted : 2020.03.26
  • Published : 2020.04.30

Abstract

This research was investigated the effects of temperature and time against the formation of biofilms by foodborne pathogens on surfaces of polyethylene and stainless steel. After preliminary experiments with 32 strains from 6 species of foodborne pathogens (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Salmonella Typhimurium), one strain from each species with the highest biofilm formation efficiency was selected. All foodborne pathogens showed a tendency toward an increased ability for biofilm formation with increasing temperature, but there was no consistency between the two materials and between foodborne pathogens. At all tested temperatures, the biofilm formation ability of E. coli and P. aeruginosa on the polyethylene surface was higher than that on the stainless steel surface with significant differences. The foodborne pathogens all formed biofilms immediately upon inoculation, and biofilm formation by E. coli, P. aeruginosa, and S. Typhimurium increased on both the polyethylene and stainless steel surfaces at 1 h after inoculation compared to at 0 h. At 7 days after biofilm formation, the other strains except S. aureus showed no difference in survival rates on polyethylene and stainless steel. The ability of these 6 foodborne pathogens to form biofilms showed different trends depending on the type of bacteria and the instrument material, i.e., polyethylene and stainless steel.

식중독 미생물이 polyethylene과 stainless steel의 표면에서 biofilm을 형성하는 특성에 대하여 온도와 시간이 미치는 영향을 조사하였다. 식중독 미생물 6종(Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Salmonella Typhimurium) 32균주를 대상으로 예비실험을 하여 각 종별로 biofilm 형성능이 강한 1균주씩을 선발하였다. 시험한 식중독 미생물 6종 모두 온도가 증가함에 따라 biofilm 형성능이 증가하였으며, 식중독 미생물의 종류와 polyethylene 및 stainless steel의 표면에 따른 차이는 일관된 경향을 나타내지 않았다. E. coli와 P. aeruginosa가 polyethylene 표면에서 biofilm을 형성하는 능력은 stainless steel 표면에서 보다 유의적으로 높았다. 식중독 미생물은 표면에 균을 접종했을 때 바로 biofilm을 형성하였으며, E. coli, P. aeruginosa 및 S. Typhimurium은 접종 1시간 후에 모든 표면에서 biofilm을 형성하였다. Biofilm 형성 7일 후, S. aureus를 제외한 나머지 균주는 polyethylene과 stainless steel 표면에서 생존률에 차이가 없었다. 시험한 6종의 식중독 미생물의 경우 biofilm을 형성하는 능력은 균의 종류 및 polyethylene과 stainless steel 표면에 따라 다르게 나타났다.

Keywords

References

  1. Faillea, C., Cunaultb, C., Duboisa, T., Benezech, T., Hygienic design of food processing lines to mitigate the risk of bacterial food contamination with respect to environmental concerns. Inn. Food Sci. Emerg. Technol., 46, 65-73 (2018). https://doi.org/10.1016/j.ifset.2017.10.002
  2. Hertwig, C., Meneses, M., Mathys, A., Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review. Trends in Food Sci. Technol., 77, 131-142 (2018). https://doi.org/10.1016/j.tifs.2018.05.011
  3. Tomaszewska, M., Trafialek, J., Suebpongsang, P., Kolanowski, W., Food hygiene knowledge and practice of consumers in Poland and in Thailand - A survey. Food Cont., 85, 76-84 (2018). https://doi.org/10.1016/j.foodcont.2017.09.022
  4. Nerin, C., Aznar, M., Carrizo, D., Food contamination during food process. Trends in Food Sci. Technol., 48, 63-68 (2016). https://doi.org/10.1016/j.tifs.2015.12.004
  5. Brooks, J.D., Flint, S.H., Biofilms in the food industry: problems and potential solutions. Int. J. Food Sci. Technol., 43, 2163-2176 (2008). https://doi.org/10.1111/j.1365-2621.2008.01839.x
  6. Henriques, A.R., Fraqueza, M.J., Biofilm-forming ability and biocide susceptibility of Listeria monocytogenes strains isolated from the ready-to-eat meat-based food products food chain. LWT-Food Sci. Technol., 81, 180-187 (2017). https://doi.org/10.1016/j.lwt.2017.03.045
  7. Choi, Y.W., Lee, H.W., Kim, S.M., Lee, J.C., Lee, Y.C., Seol, S.Y., Cho, D.T., Kim, J.M., Biofilm forming ability and production of curli and cellulose in clinical isolates of Enterobacteriaceae. Korean J. Microbiol., 47(4), 335-341 (2011).
  8. Jahid, I.K., Ha, S.D., A review of microbial biofilms of produce: Future challenge to food safety. Food Sci. Biotechnol., 21(2), 299-316 (2012). https://doi.org/10.1007/s10068-012-0041-1
  9. Xu, H., Zou, Y.Y., Lee, H.Y., Ahn, J.H., Effect of NaCl on the biofilm formation by foodborne pathogens. J. Food Sci., 75(9), 580-585 (2010). https://doi.org/10.1111/j.1750-3841.2010.01836.x
  10. Simoes, M., Simoes, L.C., Vieira, M.J., A review of current and emergent biofilm control strategies. LWT-Food Sci. Technol., 43, 573-583 (2010). https://doi.org/10.1016/j.lwt.2009.12.008
  11. Bower, C.K., McGuire, J., Daeschel, M.A., The adhesion and detachment of bacteria and spores on food-contact surfaces. Trends in Food Sci. Technol., 7(5), 52-57 (1996).
  12. Govaert, M., Smet, C., Vergauwen, L., Ecimovic, B., Walsh, J.L., Baka, M., Impe, J.V., Influence of plasma characteristics on the efficacy of cold atmospheric plasma (CAP) for inactivation of Listeria monocytogenes and Salmonella Typhimurium biofilms. Inn. Food Sci. Emerg. Technol., 52, 376-386 (2019). https://doi.org/10.1016/j.ifset.2019.01.013
  13. Bonaventura, G.D., Piccolomini, R., Paludi, D., Orio, V.D., Vergara, A., Conter, M., Lanieri, A., Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: Relationship with motility and cell surface hydrophobicity. J. Appl. Microbiol., 104, 1552-1561 (2008). https://doi.org/10.1111/j.1365-2672.2007.03688.x
  14. Kazuya, M., Kodai, E., Daisuke, H., Fumihiko, T., Toshitaka, U., Effects of temperature and nutrient conditions on biofilm formation of Pseudomonas putida. Food Sci. Technol. Res., 18(6), 879-883 (2012). https://doi.org/10.3136/fstr.18.879
  15. Desai, M.A., Soni, K.A., Nannapaneni, R., Schilling, M.W., Silva, J.L., Reduction of Listeria monocytogenes biofilms on stainless steel and polystyrene surface by essential oils. J. Food Protect., 75(7), 1332-1337 (2012). https://doi.org/10.4315/0362-028X.JFP-11-517
  16. Tang, P.L., Pui, C.F., Wong, W.C., Noorlis, A., Son, R., Biofilm forming ability and time course study of growth of Salmonella Typhi on fresh produce surfaces. Int. Food Res. J., 19(1), 71-76 (2012).
  17. SAS Institute, Inc., SAS User's Guide. 1990. Statistical Analysis Systems Institute, Cary, NC, USA.
  18. Shin, D.H., Oh, D.H., Woo, G.J., Jung, S.H., Ha, S.D., 2011. Food Hygienic. Hanmi Medical Publishing Co., Seoul, Korea.
  19. Kim, J.Y., Yoo, H.L., Lee, Y.D., Park, J.H., Detection of Bacillus cereus group from raw rice and characteristics of biofilm formation. Korean J. Food Nutr., 24(4), 657-663 (2011). https://doi.org/10.9799/ksfan.2011.24.4.657
  20. Blackman, I.C., Frank, J.F., Growth of Listeria monocytogenes as a biofilm on various food-processing surfaces. J. Food Protect., 59(8), 827-831 (1996). https://doi.org/10.4315/0362-028X-59.8.827
  21. Emiliane, A.A., Andrade, N.J., Silva, L.H., Bernardes, P.C., Teixeira, A.V., Sa, J.P., Fialhom, J.F., Fernandes, P.E., Antimicrobial effects of silver nanoparticles against bacterial cells adhered to stainless steel surfaces. J. Food Protect., 75(4), 701-705 (2012). https://doi.org/10.4315/0362-028X.JFP-11-276
  22. Kamlesh, A.S., Ademola, O., Ramakrishna, N., Schilling, M.W., Silva, J.L., Benjy, M., Bailey, R.H., Inhibition and inactivation of Salmonella Typhimurium biofilms from polystyrene and stainless steel surfaces by essential oils and phenolic constituent carvacrol. J. Food Protect., 76(2), 205-212 (2013). https://doi.org/10.4315/0362-028X.JFP-12-196
  23. Chmielewski, R.A.N., Frank, J.F., Biofilm formation and control in food processing facilities. Compre. Rev. Food Sci. Food Safety, 2, 22-32 (2003). https://doi.org/10.1111/j.1541-4337.2003.tb00012.x
  24. Mafu, A.A., Roy, D., Goulet, J., Magny, P., Attachment of Listeria monocytogenes to stainless steel, glass, polypropylene, and rubber surfaces after short contact times. J. Food Protect., 53(9), 742-746 (1990). https://doi.org/10.4315/0362-028X-53.9.742
  25. Lee, E.J., Park, J.H., Inactivation activity of bronze alloy yugi for reduction of cross-contamination of food-borne pathogen in food processing. J. Food Hyg. Safe., 23(4), 309-313 (2008).
  26. Krysinski, E.P., Brown, L.J., Marchisello, T.J., Effect of cleaners and sanitizers on Listeria monocytogenes attached to product contact surfaces. J. Food Protect., 55(4), 246-251 (1992). https://doi.org/10.4315/0362-028X-55.4.246
  27. Kim, H.K., Bang, J.H., Beuchat, L.R., Ryu, J., Fate of Enterobacter sakazakii attached to or in biofilms on stainless steel upon exposure to various temperatures or relative humidities. J. Food Protect., 71(5), 940-945 (2008). https://doi.org/10.4315/0362-028X-71.5.940