DOI QR코드

DOI QR Code

Synergistic Effect of Bacteriophage and Antibiotic against Antibiotic-Resistant Salmonella Typhimurium

  • Petsong, Kantiya (Department of Food Technology, Prince of Songkla University) ;
  • Vongkamjan, Kitiya (Department of Food Technology, Prince of Songkla University) ;
  • Ahn, Juhee (Department of Medical Biomaterials Engineering, Kangwon National University)
  • Received : 2020.03.03
  • Accepted : 2020.03.26
  • Published : 2020.04.30

Abstract

In this study, we investigated the efficacy of Salmonella phage P22 combined with antibiotics to inhibit antibiotic-resistant S. Typhimurium CCARM 8009. The synergistic effect of phage P22 and antibiotics was evaluated by using disk diffusion and broth dilution assays. The development of Antimicrobial resistance was determined after time-kill assay. The antibiotic susceptibility assay showed the inhibition zone sizes around the antibiotic disks were increased up to 78.8% in the presence of phage (cefotaxime; 13.6%, chloramphenicol; 19.3%, ciprofloxacin; 12.7% and erythromycin; 78.8%). The minimum inhibitory concentration values of the combination treatment significantly decreased from 256 to 64 mg/mL for tetracycline, 8 to 4 mg/mL for chloramphenicol, 0.0156 to 0.0078 mg/mL for ciprofloxacin, 128 to 64 mg/mL for erythromycin and 512 to 256 mg/mL for streptomycin. The number of S. Typhimurium CCARM 8009 was approximately 4-log lower than that of the control throughout the combination treatment with phage P22 and ciprofloxacin delete at 37℃ for 20 h. The results indicate that the development of antimicrobial resistance in S. Typhimurium could be reduced in the presence of phage treatment. This study provides promising evidence for the phage-antibiotic combination as an effective treatment to control antibiotic-resistant bacteria.

본 연구는 항생제 내성 Salmonella Typhimurium CCARM 8009을 저해하기 위한 phage와 항생제 조합처리의 효과를 평가하였다. 디스크 확산법과 액체배지 희석법에 의해 phage와 항생제의 상승 저해효과를 측정하였고 배양을 통한 항생제 내성 유도를 평가하였다. Phage를 처리한 cefotaxime, chloramphenicol, ciprofloxacin, erythromycin의 디스크의 저해 구역은 각각 13.6%, 19.3%, 12.7%, 78.8%로 증가되었다. Phage와 항생제 조합 처리에 의해 tetracycline, chloramphenicol, ciprofloxacin, erythromycin, streptomycin의 최소생육억제농도는 각각 64, 4, 0.0078, 64, 256 mg/mL으로 감소되었다. Phage와 항생제의 조합 처리는 항생제 내성 S. Typhimurium CCARM 8009을 효과적으로 저해하였다 (4 log reduction). 본 결과는 phage와 항생제의 조합처리는 항생제 내성균을 제어하기 위한 방법으로 충분히 응용가치가 높음을 보여주고 있다.

Keywords

References

  1. CDC, (2020. February 1) Salmonella. 2019. Available online: https://www.cdc.gov/salmonella/general/index.html#two
  2. Eng, S.K., Pusparajah, P., Ab Mutalib, N.S., Ser, H.L., Chan, K.G., Lee, L.H., Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci., 8, 284-293 (2015). https://doi.org/10.1080/21553769.2015.1051243
  3. Martin, M.J., Thottathil, S.E., Newman, T.B., Antibiotics overuse in animal agriculture: A call to action for health care providers. Am. J. Public Health, 105, 2409-2410 (2015). https://doi.org/10.2105/AJPH.2015.302870
  4. Prestinaci, F., Pezzotti, P., Pantosti, A., Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glo. Health, 109, 309-318 (2015). https://doi.org/10.1179/2047773215Y.0000000030
  5. V T Nair, D., Venkitanarayanan, K., Kollanoor Johny, A., Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods, 7, 167 (2018). https://doi.org/10.3390/foods7100167
  6. Clokie, M.R.J., Millard, A.D., Letarov, A.V., Heaphy, S., Phages in nature. Bacteriophage, 1, 31-45 (2011). https://doi.org/10.4161/bact.1.1.14942
  7. Zhang, J., Li, Z., Cao, Z., Wang, L., Li, X., Li, S., Xu, Y., Bacteriophages as antimicrobial agents against major pathogens in swine: a review. J. Anim. Sci. Biotechnol., 6, 39 (2015). https://doi.org/10.1186/s40104-015-0039-7
  8. Kazi, M., Annapure, U.S., Bacteriophage biocontrol of foodborne pathogens. J. Food Sci. Technol., 53, 1355-1362 (2016). https://doi.org/10.1007/s13197-015-1996-8
  9. Moye, Z.D., Woolston, J., Sulakvelidze, A., Bacteriophage applications for food production and processing. Viruses, 10, (2018).
  10. Lin, D.M., Koskella, B., Lin, H.C., Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Therapeut., 8, 162-173 (2017). https://doi.org/10.4292/wjgpt.v8.i3.162
  11. Petsong, K., Uddin, M.J., Vongkamjan, K., Ahn, J., Combined effect of bacteriophage and antibiotic on the inhibition of the development of antibiotic resistance in Salmonella typhimurium. Food Sci. Biotechnol., 27, 1239-1244 (2018). https://doi.org/10.1007/s10068-018-0351-z
  12. Bielke, L., Higgins, S., Donoghue, A., Donoghue, D., Hargis, B.M., Salmonella host range of bacteriophages that infect multiple genera. Poult. Sci., 86, 2536-2540 (2007). https://doi.org/10.3382/ps.2007-00250
  13. Lin, H.L., Lin, C.C., Lin, Y.J., Lin, H.C., Shih, C.M., Chen, C.R., Huang, R.N., Kuo, T.C., Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures. Appl. Environ. Microbiol., 76, 1683-1685 (2010). https://doi.org/10.1128/AEM.00824-09
  14. Dickey, J., Perrot, V., Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro. PLoS One, 14, e0209390 (2019). https://doi.org/10.1371/journal.pone.0209390
  15. Akturk, E., Oliveira, H., Santos, S.B., Costa, S., Kuyumcu, S., Melo, L.D.R., Azeredo, J., Synergistic action of phage and antibiotics: Parameters to enhance the killing efficacy against mono and dual-species biofilms. Antibiotics, 8, 103 (2019). https://doi.org/10.3390/antibiotics8030103
  16. Valerio, N., Oliveira, C., Jesus, V., Branco, T., Pereira, C., Moreirinha, C., Almeida, A., Effects of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli. Virus Res., 240, 8-17 (2017). https://doi.org/10.1016/j.virusres.2017.07.015
  17. Comeau, A.M., Tetart, F., Trojet, S.N., Prere, M.-F., Krisch, H.M., Phage-antibiotic synergy (PAS): ${\beta}$-Lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One, 2, e799 (2007). https://doi.org/10.1371/journal.pone.0000799
  18. Torres-Barcelo, C., Hochberg, M.E., Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol., 24, 249-256 (2016). https://doi.org/10.1016/j.tim.2015.12.011
  19. Hooper, D.C., Jacoby, G.A., Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance. Cold Spring Harbor Perspect. Med., 6, a025320 (2016). https://doi.org/10.1101/cshperspect.a025320
  20. Diaz-Munoz, S.L., Koskella, B., Bacteria-phage interactions in natural environments. Adv. Appl. Microbiol., 89, 135-183 (2014). https://doi.org/10.1016/B978-0-12-800259-9.00004-4