DOI QR코드

DOI QR Code

EEG Signal Classification based on SVM Algorithm

SVM(Support Vector Machine) 알고리즘 기반의 EEG(Electroencephalogram) 신호 분류

  • Rhee, Sang-Won (Department of Science Education, Daegu University) ;
  • Cho, Han-Jin (Department of Smart & PhotoVoltaic Convergence, Far East University) ;
  • Chae, Cheol-Joo (Department of General Education, Korea National College of Agriculture and Fisheries)
  • 이상원 (대구대학교 과학교육학과) ;
  • 조한진 (극동대학교 에너지IT공학과) ;
  • 채철주 (한국농수산대학 교양공통과)
  • Received : 2020.01.07
  • Accepted : 2020.02.20
  • Published : 2020.02.28

Abstract

In this paper, we measured the user's EEG signal and classified the EEG signal using the Support Vector Machine algorithm and measured the accuracy of the signal. An experiment was conducted to measure the user's EEG signals by separating men and women, and a single channel EEG device was used for EEG signal measurements. The results of measuring users' EEG signals using EEG devices were analyzed using R. In addition, data in the study was predicted using a 80:20 ratio between training data and test data by applying a combination of specific vectors with the highest classifying performance of the SVM, and thus the predicted accuracy of 93.2% of the recognition rate. This paper suggested that the user's EEG signal could be recognized at about 93.2 percent, and that it can be performed only by simple linear classification of the SVM algorithm, which can be used variously for biometrics using EEG signals.

본 논문에서는 사용자의 EEG(Electroencephalogram)신호를 측정하여 SVM(Support Vector Machine) 알고리즘을 이용하여 EEG 신호룰 분류하고 신호의 정확도를 측정하였다. 사용자의 EEG 신호를 측정하기 위해 남·여를 구분하여 실험을 진행하였으며, EEG 신호 측정은 단채널 EEG 디바이스를 이용하였다. EEG 디바이스를 이용하여 사용자의 EEG 신호를 측정한 결과는 R을 이용하여 분석하였다. 또한 SVM의 분류 성능이 최고가 되는 특정 벡터의 조합을 적용시켜 EEG 측정 실험 데이터를 80:20(훈련 데이터: 테스트 데이터) 비율로 예측해 본 결과 인식률 93.2% 의 예측 정확도를 보였다. 본 논문에서는 사용자의 EEG 신호를 약 93.2% 정도로 인식할 수 있었으며, SVM 알고리즘의 간단한 선형 분류만으로 수행이 가능하다는 점은 EEG 신호를 이용하여 생체인증에 다양하게 활용될 수 있음을 제시하였다.

Keywords

References

  1. H. Jeon & S. H. Lee. (2016). Electroencephalography of learning and memory, Korean J Biol Psychiatry, 23(3), 102.
  2. O. Jensen, J. Kaiser & J. P. Lachaux. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in neurosciences, 30(7), 317-324. DOI : 10.1016/j.tins.2007.05.001
  3. R. Llinas, F. J. Urbano, E. Leznik, R. R. Ramirez & H. J. van Marle. (2005). Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends in neurosciences, 28(6), 325-333. DOI : 10.1016/j.tins.2005.04.006
  4. U. Ribary. (2005). Dynamics of thalamo-cortical network oscillations and human perception. Progress in brain research, 150, 127-142. DOI : 10.1016/S0079-6123(05)50010-4
  5. A. Schnitzler & J. Gross. (2005). Normal and pathological oscillatory communication in the brain. Nature reviews neuroscience, 6(4), 285-296. DOI : 10.1038/nrn1650
  6. P. J. Uhlhaas & W. Singer. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155-168. DOI : 10.1016/j.neuron.2006.09.020
  7. X. J. Wang. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological reviews, 90(3), 1195-1268. DOI : 10.1152/physrev.00035.2008
  8. K. Lee, C. H. Lee, J. Bae & J. Lee. (2015). EEG Signal Classification Algorithm based on DWT and SVM for Driving Robot Control. Journal of the Institute of Electronics and Information Engineers, 52(8), 117-125. DOI : 10.5573/IEIE.2015.52.8.117
  9. Y. K. Kim, C. J. Chae & H. J. Cho. (2018). User Authentication Method using EEG Signal in FIDO System. Journal of the Korea Convergence Society, 9(1), 465-471. DOI : 10.15207/JKCS.2018.9.1.465
  10. H. G. Ko, J. M. Cho & D. Choi. (2017). An Incremental Elimination Method of EEG Samples Collected by Single-Channel EEG Measurement Device for Practical Brainwave-Based User Authentication. Journal of the Korea Institute of Information Security and Cryptology, 27(2), 383-395. DOI : 10.13089/JKIISC.2017.27.2.383
  11. W. Khalifa, A. Salem, M. Roushdy & K. Revett. (2012, May). A survey of EEG based user authentication schemes. In 2012 8th International Conference on Informatics and Systems (INFOS) (pp. BIO-55). IEEE.
  12. D. Starling. (2003). Temporal Analysis of EEG patterns in a biofeedback based Brain Computer Interface (pp. 1-36). Tech Report No. CYB/2003/UG/DJS/1.
  13. G. Costantini et al. (2009, July). SVM classification of eeg signals for brain computer interface. In Proceedings of the 2009 conference on Neural Nets WIRN09: Proceedings of the 19th Italian Workshop on Neural Nets, Vietri sul Mare, Salerno, Italy, May 28-30 2009 (pp. 229-233). IOS Press.
  14. C. H. Lee, J. W. Kwon, G. D. Kim, J. E. Hong, D. S. Shin & D. H. Lee. (2009). A study on EEG based concentration transmission and brain computer interface application. Journal of the Institute of Electronics Engineers of Korea SC, 46(2), 41-46.
  15. J. Chuang, H. Nguyen, C. Wang & B. Johnson. (2013, April). I think, therefore i am: Usability and security of authentication using brainwaves. In International Conference on Financial Cryptography and Data Security (pp. 1-16). Springer, Berlin, Heidelberg.