DOI QR코드

DOI QR Code

Mechanical properties by resin injection method of orthdontic acrylic resin

교정용 레진장치의 레진주입방법에 따른 기계적 특성

  • Jo, Jeong-Ki (Department of Dental Laboratory Technology, Chungbuk Health & Science University)
  • 조정기 (충북보건과학대학교 치기공과)
  • Received : 2020.02.21
  • Accepted : 2020.04.20
  • Published : 2020.04.28

Abstract

Polymethyl methacrylate (PMMA), a self-curing resin mainly used in removable orthodontic appliances, is an acrylic resin mainly used in the field of modern dentistry. As an advantage, it has been used for a long time as a material for orthodontic devices in dentistry due to its color and volume, tissue affinity, and stability. The production of PMMA can be divided into self-polymerization method and thermal polymerization method according to activation method. Self-curing resins have long been used as orthodontic devices. The resin injection method is largely divided into a sprinkle-on method and a mixing method. In this study, we intend to test the mechanical properties according to the resin injection method of the orthodontic device, such as strength, modulus of elasticity, and surface roughness. There was no significant difference in strength as a result of three-point bending strength test on rectangular specimens (1.4 × 3.0 × 19.0 mm) of orthodontic PMMA. There was also no significant difference in hardness. There was no significant difference in surface roughness. It was confirmed that the orthodontic PMMA had no significant difference in mechanical properties according to the resin injection method of the orthodontic device.

가철성 교정장치에서 주로 사용하고 있는 자가중합 레진인 Polymethyl methacrylate (PMMA)는 현대 치의학 분야에서 주로 쓰이고 있는 아크릴릭 레진이다. 장점으로 색과 체적의 조직 친화성, 안정성 등 있어 치과에선 교정장치 재료로 오랫동안 사용해 왔다. PMMA의 제작은 활성화 방법에 따라 자가중합방식과 열중합 방식으로 나눌 수 있다. 자가중합 레진은 치과 교정장치로 오래동안 사용되고 있다. 레진의 주입방법은 크게 적층법(sprinkle-on method)와 혼합법(mixing method)이 있다. 본 연구에서는 교정장치의 레진 주입방법에 따른 기계적 특성인 강도, 탄성계수 경도, 표면조도를 실험 해보고자 한다. Orthodontic PMMA 의 직사각형 시편 (1.4×3.0×19.0 mm)에 3점 굽힘강도 실험한 결과 강도에선 유의한 차이가 없었다. 경도 역시 유의한 차이가 없었다. 표면조도도 큰 차이가 보이지 않았다. Orthodontic PMMA는 교정용 장치의 레진주입 방식에 따른 기계적 특성의 유의한 차이가 없음을 확인하였다.

Keywords

References

  1. B. U. Zachrisson. (2005). Global trends and paradigm shifts in clinical orthodontics. World journal of orthodontics. 6(3), 7. DOI: 10.1051/orthodfr/2017022.
  2. M. M. Lino, C. S. O. Paulo, A. C. Vale, M. F. Vaz & L. S. Ferreira. (2013) Antifungal activity of dental resins containing amphotericin B-conjugated nanoparticles. Dent Mater. 29(10):e252-e62. DOI : 10.1016 / j.dental.2013.07.023 https://doi.org/10.1016/j.dental.2013.07.023
  3. J .S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park & H. J. Lee et al .(2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 3(1): 95-101. DOI: 10.1016/j.nano.2006.12.001
  4. L. S. Acosta-Torres, Mendieta I, Nunez-Anita RE, Cajero-Juarez M, Castano VM. (2012) Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int J Nanomedicine. 27:4777-86. DOI: 10.2147/IJN.S32391
  5. J. Wen, F. Jiang, C. K. Yeh & Y. Sun. (2016) Controlling fungal biofilms with functional drug delivery denture biomaterials. Colloids and Surfaces B: Biointerfaces. 140:19-27. DOI: 10.1016/j.colsurfb.2015.12.028
  6. W. Wang, S. Liao, Y. Zhu, M. Liu, Q. Zhao & Y. Fu. (2015) Recent Applications of Nanomaterials in Prosthodontics. J Nanomater. 2015:11. DOI.; 10.1155/2015/408643
  7. Padovani GC, Feitosa VP, Sauro S, Tay FR, Duran G, Paula AJ, et al.(2015) Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects. Trends Biotechnol. 33(11):621-36. DOI: 10.1016/j.tibtech.2015.09.005
  8. De Castro DT, Valente ML, Agnelli JA, Lovato da Silva CH, Watanabe E, Siqueira RL, et al.(2016) In vitro study of the antibacterial properties and impact strength of dental acrylic resins modified with a nanomaterial. J Prosthet Dent. 115(2):238-46 DOI: 10.4103/JCD.JCD_266_17
  9. J. Chen, H. Peng, X. Wang, F. Shao, Z. Yuan & H. Han. (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale. 6(3):1879-89. DOI: 10.1039/c3nr04941
  10. H. Chen, B. Wang, D. Gao, M. Guan, L Zheng & H. Ouyang et al.(2013) Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small. 9(16):2735-46. DOI: 10.1002/smll.201202792
  11. Morimune S, Nishino T, Goto T.(2012) Ecological Approach to Graphene Oxide Reinforced Poly (methyl methacrylate) Nanocomposites. ACS Appl Mater Interfaces. 4(7):3596-601.. DOI: 10.1021/am3006687
  12. H. H. Lee, C. J. Lee & K. Asaoka. (2012) Correlation in the mechanical properties of acrylic denture base resins. Dent Mater J. 31(1):157-64. DOI: 10.4012/dmj.2011-205
  13. Kenneth J. Anusavice. Phillips' Science of Dental Materials. 11 ed;2006;143-169,73-735.
  14. Redding S, Bhatt B, Rawls HR, Siegel G, Scott K, Lopez-Ribot J. Inhibition of Candida albicans biofilm formation on denture material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(5):669-72. DOI: 10.1016/j.tripleo.2009.01.021.
  15. H. S. Noh, J. M. Kim, S. Kim & T. S. Jeong (2008). Effect of curing conditions on the monomerelution of orthodontic acrylic resin. J Korea Acad Pediatr Dent. 2008;35:477-484.
  16. S. Y. Jeong, J. H. Kim, B. D. Yang, J. M. Park & K. Y. Song. Fracture toughness of self-curingdenture base resins with different polymerizing conditions. J Kor Acad Prosthodont2005;43:52-60. DOI: 10.4047/jap.2013.5.4.396
  17. J. H. Jorge, E. T. Giampaolo, C. E. Vergani , A. L. Machado, A. C. Pavarina 7 I. Z. Carlos.(2006). Effect of post-polymerization heat treatments on the cytotoxicity of two denture base acrylic resins. J Appl Oral Sci., 14(3), 203-7. DOI: 10.1590/S1678-77572006000300011
  18. J. H. Lee. et al (2016). Development of long-term antimicrobial poly (methyl methacrylate) by incorporating mesoporous silica nanocarriers. Dent Mater 32, 1564-1574. https://doi.org/10.1016/j.dental.2016.09.001