References
- B. U. Zachrisson. (2005). Global trends and paradigm shifts in clinical orthodontics. World journal of orthodontics. 6(3), 7. DOI: 10.1051/orthodfr/2017022.
- M. M. Lino, C. S. O. Paulo, A. C. Vale, M. F. Vaz & L. S. Ferreira. (2013) Antifungal activity of dental resins containing amphotericin B-conjugated nanoparticles. Dent Mater. 29(10):e252-e62. DOI : 10.1016 / j.dental.2013.07.023 https://doi.org/10.1016/j.dental.2013.07.023
- J .S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park & H. J. Lee et al .(2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 3(1): 95-101. DOI: 10.1016/j.nano.2006.12.001
- L. S. Acosta-Torres, Mendieta I, Nunez-Anita RE, Cajero-Juarez M, Castano VM. (2012) Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int J Nanomedicine. 27:4777-86. DOI: 10.2147/IJN.S32391
- J. Wen, F. Jiang, C. K. Yeh & Y. Sun. (2016) Controlling fungal biofilms with functional drug delivery denture biomaterials. Colloids and Surfaces B: Biointerfaces. 140:19-27. DOI: 10.1016/j.colsurfb.2015.12.028
- W. Wang, S. Liao, Y. Zhu, M. Liu, Q. Zhao & Y. Fu. (2015) Recent Applications of Nanomaterials in Prosthodontics. J Nanomater. 2015:11. DOI.; 10.1155/2015/408643
- Padovani GC, Feitosa VP, Sauro S, Tay FR, Duran G, Paula AJ, et al.(2015) Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects. Trends Biotechnol. 33(11):621-36. DOI: 10.1016/j.tibtech.2015.09.005
- De Castro DT, Valente ML, Agnelli JA, Lovato da Silva CH, Watanabe E, Siqueira RL, et al.(2016) In vitro study of the antibacterial properties and impact strength of dental acrylic resins modified with a nanomaterial. J Prosthet Dent. 115(2):238-46 DOI: 10.4103/JCD.JCD_266_17
- J. Chen, H. Peng, X. Wang, F. Shao, Z. Yuan & H. Han. (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale. 6(3):1879-89. DOI: 10.1039/c3nr04941
- H. Chen, B. Wang, D. Gao, M. Guan, L Zheng & H. Ouyang et al.(2013) Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small. 9(16):2735-46. DOI: 10.1002/smll.201202792
- Morimune S, Nishino T, Goto T.(2012) Ecological Approach to Graphene Oxide Reinforced Poly (methyl methacrylate) Nanocomposites. ACS Appl Mater Interfaces. 4(7):3596-601.. DOI: 10.1021/am3006687
- H. H. Lee, C. J. Lee & K. Asaoka. (2012) Correlation in the mechanical properties of acrylic denture base resins. Dent Mater J. 31(1):157-64. DOI: 10.4012/dmj.2011-205
- Kenneth J. Anusavice. Phillips' Science of Dental Materials. 11 ed;2006;143-169,73-735.
- Redding S, Bhatt B, Rawls HR, Siegel G, Scott K, Lopez-Ribot J. Inhibition of Candida albicans biofilm formation on denture material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(5):669-72. DOI: 10.1016/j.tripleo.2009.01.021.
- H. S. Noh, J. M. Kim, S. Kim & T. S. Jeong (2008). Effect of curing conditions on the monomerelution of orthodontic acrylic resin. J Korea Acad Pediatr Dent. 2008;35:477-484.
- S. Y. Jeong, J. H. Kim, B. D. Yang, J. M. Park & K. Y. Song. Fracture toughness of self-curingdenture base resins with different polymerizing conditions. J Kor Acad Prosthodont2005;43:52-60. DOI: 10.4047/jap.2013.5.4.396
- J. H. Jorge, E. T. Giampaolo, C. E. Vergani , A. L. Machado, A. C. Pavarina 7 I. Z. Carlos.(2006). Effect of post-polymerization heat treatments on the cytotoxicity of two denture base acrylic resins. J Appl Oral Sci., 14(3), 203-7. DOI: 10.1590/S1678-77572006000300011
- J. H. Lee. et al (2016). Development of long-term antimicrobial poly (methyl methacrylate) by incorporating mesoporous silica nanocarriers. Dent Mater 32, 1564-1574. https://doi.org/10.1016/j.dental.2016.09.001