• Title/Summary/Keyword: Orthodontic resin

Search Result 151, Processing Time 0.024 seconds

Mechanical properties by resin injection method of orthdontic acrylic resin (교정용 레진장치의 레진주입방법에 따른 기계적 특성)

  • Jo, Jeong-Ki
    • Journal of Digital Convergence
    • /
    • v.18 no.4
    • /
    • pp.341-346
    • /
    • 2020
  • Polymethyl methacrylate (PMMA), a self-curing resin mainly used in removable orthodontic appliances, is an acrylic resin mainly used in the field of modern dentistry. As an advantage, it has been used for a long time as a material for orthodontic devices in dentistry due to its color and volume, tissue affinity, and stability. The production of PMMA can be divided into self-polymerization method and thermal polymerization method according to activation method. Self-curing resins have long been used as orthodontic devices. The resin injection method is largely divided into a sprinkle-on method and a mixing method. In this study, we intend to test the mechanical properties according to the resin injection method of the orthodontic device, such as strength, modulus of elasticity, and surface roughness. There was no significant difference in strength as a result of three-point bending strength test on rectangular specimens (1.4 × 3.0 × 19.0 mm) of orthodontic PMMA. There was also no significant difference in hardness. There was no significant difference in surface roughness. It was confirmed that the orthodontic PMMA had no significant difference in mechanical properties according to the resin injection method of the orthodontic device.

THE SHEAR BOND STRENGTH OF TWO ADHESIVES BONDED TO COMPOSITE RESIN AND GLASS IONOMER CEMENT RESTORATIONS (복합레진과 Glass Ionomer Cement수복물에 대한 Bracket의 접착전단강도)

  • Han, Jae-Ik;Rhee, Byung-Tae
    • The korean journal of orthodontics
    • /
    • v.20 no.3 s.32
    • /
    • pp.583-591
    • /
    • 1990
  • If the bond strength is sufficient to resist orthodontic force, orthodontic brackets can be bonded to restorations. Orthodontic brackets were bonded to composite resin and glass ionomer cement restorations with no-mix adhesive or glass ionomer cement. The shear bond strength of adhesives bonded to restorations was studied in vitro. Orthodontic brackets were bonded to 10 extracted natural teeth, 40 composite resin restorations and 40 glass ionomer restorations. The surfaces of composite resin restorations were roughened or applied with bonding agent (Scothbond) after surface roughening. The surfaces of glass ionomer cement restorations were conditioned with acid etching or applied with Scotchbond to etched surface. The adhesive was no-mix resin or glass ionomer cement. The shear bond strength was measured. The results were as follows: 1. Orthodontic brackets could be bonded to composite resin restorations effectively as they could be bonded to acid etched enamel with no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was not affected by bonding agent greatly. 2. The shear bond strength of no-mix adhesive bonded to acid etched glass ionomer cement restorations was sufficient to resist orthodontic force. However. the fracture risk of glass ionomer cement restorations was increased during debonding. The bonding agent couldn't increase the shear bond strength greatly. 3. The shear bond strength of glass ionomer cement bonded to glass ionomer cement restorations was lower than that of no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was greatly decreased by bonding agent. 4. The shear bond strength of glass ionomer cement bonded to composite resin restorations was too low to resist orthodontic force.

  • PDF

Evaluation of Physical Properties of Resin Containing Zinc Nanoparticle. (아연나노입자함유 교정용 레진의 물리적 특성 평가)

  • Jo, Jeong-Ki
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.373-379
    • /
    • 2019
  • Polymethyl methacrylate (PMMA), a self-polymerizing resin for removable orthodontic devices, has been used as a dental orthodontic device for many years because of its advantages such as color stability, volume stability, and tissue compatibility. However, such a removable orthodontic device has a disadvantage that the longer the use in the oral cavity due to the low strength of the PMMA fracture of the orthodontic device resin in use. In this study, zinc nanoparticles (ZNP) were mixed with orthodontic PMMA to introduce strength effect. Rectangular samples ($1.4{\times}3.0{\times}19.0mm$) of orthodontic PMMA (0, 0.5, 1.0, 2.0 and 4.0%) containing ZNP were prepared. The finished specimen was tested for three-point bending strength at a speed of 1 mm / min, and the Vickers hardness was measured three times using a hardness tester. The surface roughness was measured with a surface roughness. As a result, the 3-point bending strength did not change significantly (p>0.05). Surface energy increased significantly. As a result, we successfully synthesized ZNP in this study and prepared the dispersed resin specimen for calibration. It will be possible to develop high-density dental orthodontic resins.

The Effect of Changes in Polymerization Conditions of Orthodontic Acrylic Resin on Maximum Load (Orthodontic Acrylic Resin의 중합조건 변화가 최대하중에 미치는 영향)

  • Lee, Gyu Sun
    • Journal of Technologic Dentistry
    • /
    • v.35 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • Purpose: In order to find out the impact of changes in polymerization conditions of orthodontic acrylic resin on maximum load. Methods: While maintaining mixing ratio 3:1 of polymer and monomer in spray-on way in the production condition of polymerization temperature $25^{\circ}C$ or $37^{\circ}C$ for 10 minutes or 30 minutes of polymerization time by pressure $3kfg/cm^2$ or $6kfg/cm^2$ in the lab maintaining $25^{\circ}C$ of room temperature, the change in maximum load rise rate was tested by producing 5 acrylic resin specimens for orthodontics per group to meet the standards of $25mm{\times}2mm{\times}2mm$ and using INSTRON with the 3rd bar 2mm in diameter and parallel support bending device of $15{\pm}0.1mm$ as test equipment showing 30.00mm/min of crosshead speed, $50{\pm}16$ N/min of load ratio in the laboratory of $24^{\circ}C$ room temperature and as a result, the following results were obtained. Results: 1. When increasing pressure from $3kfg/cm^2$ to $6kfg/cm^2$, maximum load was lowered by -4.285%. 2. When increasing polymerization time from 10 minutes to 30 minutes, maximum load rose by 3.848%. 3. When increasing polymerization temperature from $27^{\circ}C$ to $37^{\circ}C$, maximum load rose by 5.854%. Conclusion: Considering the above test results that polymerization time and polymerization temperature when polymerizing acrylic resin for orthodontics according to changes in working conditions had an impact on the rate of rise of maximum load values but the rate of rise was lowered when increasing pressure from $3kfg/cm^2$ to $6kfg/cm^2$, we came to a conclusion that high pressure more than necessary does not affect the rate of rise of maximum load.

CLASS II COMPOSITE RESIN RESTORATION USING ORTHODONTIC BANDS (교정용 밴드를 이용한 구치부 2급 와동의 복합레진 수복)

  • Park, Sung-Dong;Park, Ki-Tae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.1
    • /
    • pp.13-17
    • /
    • 2005
  • Children and teenagers have a higher frequency of proximal surface caries in the posterior teeth than adults. For proximal restoration, class II amalgam or stainless steel crown has been widely used in the past, however composite resin restoration is getting ore popular due to it's superior cosmetic appearance. When applying composite resin on proximal area, various types of matrix bands can be utilized according to the operator's reference or skill. Such bands have several clinical effects including suitability for proximal margin, reduction of micro-leakage, moisture-control against saliva and ease finishing and polishing. In this case report, orthodontic bands were utilized instead of matrix bands as a remedy for proximal restorations in both primary and permanent teeth and their clinical advantages are as follows. 1. Orthodontic bands showed superior marginal adaptation compared to conventional matrix bands and moisture-control against saliva was excellent. 2. While applying composite resin, deformation of restoration material was estimated to be insignificant due to he rigidity of the orthodontic bands. 3. Natural tooth contour of the orthodontic bands facilitates to reproduce proximal tooth contour of the restoration. 4. In general, pediatric dentists are accustomed to applying orthodontic bands and this may allow pediatric dentists to make proximal composite restorations more efficiently than other dental specialists.

  • PDF

Accuracy of orthodontic movements with 3D printed aligners: A prospective observational pilot study

  • Marco Migliorati;Sara Drago;Tommaso Castroflorio;Paolo Pesce;Giovanni Battista;Alessandra Campobasso;Giorgio Gastaldi;Filippo Forin Valvecchi;Anna De Mari
    • The korean journal of orthodontics
    • /
    • v.54 no.3
    • /
    • pp.160-170
    • /
    • 2024
  • Objective: Owing to the availability of 3D software, scanners, and printers, clinicians are encouraged to produce in-office aligners. Recently, a new direct-printing resin (Tera Harz TC-85DAC) has been introduced. Studies on its mechanical characteristics and biological effects have been published; however, evidence on its efficacy in orthodontic treatment remains scarce. This pilot study aimed to investigate the accuracy of teeth movement achieved with direct-printed aligners. Methods: Seventeen patients (eight males and nine females) with a mean age of 27.67 ± 8.95 years, presenting with dental rotations < 30° and spaces/crowding < 5 mm, were recruited for this study. The teeth movement was planned starting from a T0 digital dental cast. The 3D direct-printed aligners were produced using Tera Harz TC-85DAC resin. Once the orthodontic treatment was completed, a final digital cast was obtained (T1). The planned teeth positions were then superimposed onto the T0 and T1 digital models. The differences between the programmed movements and the achieved overall torque, tip, rotation, and transverse dimensions were assessed using the paired t test or Wilcoxon's signed rank test. Results: The overall accuracies for torque, tip, and rotation were 67.6%, 64.2%, and 72.0%, respectively. The accuracy of the change in transverse diameter was 99.6%. Conclusions: Within the limits of the present pilot study (difficulties with abnormally shaped teeth and use of attachments), it can be concluded that 3D printed aligners can be successfully printed in-house and utilized for mildly crowded cases, with a comparable accuracy of tooth movement to that of other aligners.

A Study on Frictioal Resistance Force of Orthodontic Resin Bracket (교정용 Resin bracket의 마찰 저항력에 관한 연구)

  • Lee, Won-you;Lim, Kyung-Soo
    • The korean journal of orthodontics
    • /
    • v.29 no.1 s.72
    • /
    • pp.107-112
    • /
    • 1999
  • As increasing number of adult patients, the esthetic orthodontic appliances are needed. They are tooth-colored or translucent ceramic and resin brackets. Although ceramic and resin bracket have good esthetics, there are some disadvantage such as frictions. Recently, metal-reinforced resin bracket(MRBB) were introduced. The purpose of this study is to find frictional force of MRRB, ceramic bracket and resin brackets. There is few study in frictional force about metal reinforced resin bracket(MRRB). This study used 4 orthodontic wire(.016 S-S, .0l6X.022 S-S, .016 $TMA^{\circledR}$, .0l7X.025 $TMA^{\circledR}$ and 5 brackets(one metal bracket, one ceramic bracket, one resin bracket, two MRRB). The following result is obtained using metal bracket(Ormco.Co., U.S.A), ceramic brackets($Crystalline^{\circledR}$), resin bracket( Clear Medium $Siamase^{\circledR}$). Following conclusions are obtained. 1. Ceramic and resin bracket have significantly more frictional forces than metal reinforced resin bracket and metal bracket. 2. There is no significant difference in frictional force according to the slot types of metal - reinforced resin brackets. 3. There is no significant difference in frictional force between metal reinforced resin bracket and metal bracket. 4.. Frictional force is decreased in S-S wire than TMA wire.

  • PDF

DIASTEMA CLOSURE TREATMENT DECISION FOR AN ADOLESCENT PATIENT WITH CEREBRAL PALSY (뇌성마비인 청소년의 치간이개 치료법 결정 : 증례보고)

  • Lee, Koeun;Lee, Jae-Ho;Kang, Chung-Min
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.11 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • Diastema is thought to be a problem related to aesthetics, pronunciation, or malocclusion. Due to its extent and patient conditions, orthodontic treatment, prosthodontic treatment, and conservative direct resin restoration are the treatment options for diastema closure. Additional factors need to be considered when deciding on the most appropriate treatment of diastema, particularly for patients with cerebral palsy. A 13-year-old girl visited the Department of Pediatric Dentistry at Yonsei University Dental Hospital with a chief complaint of the large gap between her upper front teeth. After clinical and radiographic examinations, midline diastema of 4.5 mm, protrusive maxilla incisors, congenital missing teeth, retained primary teeth, etc. were identified. Prosthodontic treatment with intentional root canal treatment was not appropriate because of the patient's age. Dental spaces can be closed effectively via orthodontic appliances. However, additional prosthodontic and restorative intervention is unavoidable, which incurs significant costs and requires more time. Instead of orthodontic and prosthodontic treatment, direct resin restoration can address the chief complaint; these restorations are reversible, less harmful to other oral structure and teeth, relatively easy to apply, less expensive than other treatments, and require shorter office visits. Midline diastema can be treated in several ways. For diastema closure in patients with cerebral palsy, conservative resin restorations are a short, simple, and appropriate treatment compared with orthodontic or prosthodontic treatments.

Bond Strength of Band on Zirconia Crown with Compomer and Resin Cement (지르코니아 기성관에 컴포머와 레진 시멘트로 접착한 교정 밴드의 결합력)

  • Park, Chanhee;Lee, Jonghyung;Lee, Hangil;Kim, Jihun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.127-134
    • /
    • 2019
  • The aim of this study was to evaluate the compomer cement and resin cement as an orthodontic band cement on zirconia crown. A total of 30 specimens were prepared. Preformed stainless steel crowns and zirconia crowns of upper right second primary molar were used. Orthodontic bands were cemented on stainless steel crowns (Group I, n = 10) and zirconia crowns (Group II, n = 10) with compomer cement. The other bands were cemented on zirconia crowns with resin cement (Group III, n = 10). The tensile loads were applied to band to measure the bond strength. The mean of bond strengths of group I, II and III were 0.79 MPa, 1.09 MPa and 1.56 MPa respectively. Bond strength of group II is significantly higher than group I. There was no significant difference between group II and III. Compomer cement and resin cement containing functional monomers showed favorable bond strength of orthodontic bands.