DOI QR코드

DOI QR Code

Microbial Enrichment and Community Analysis for Bioelectrochemical Acetate Production from Carbon Dioxide

이산화탄소로부터 생물전기화학적 아세트산 생산을 위한 미생물 농화배양 및 군집 분석

  • Kim, Junhyung (School of Chemical & Biomolecular Engineering, Pusan National University) ;
  • Kim, Young-Eun (School of Chemical & Biomolecular Engineering, Pusan National University) ;
  • Park, Myeonghwa (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Song, Young Eun (School of Chemical & Biomolecular Engineering, Pusan National University) ;
  • Seol, Eunhee (School of Chemical & Biomolecular Engineering, Pusan National University) ;
  • Kim, Jung Rae (School of Chemical & Biomolecular Engineering, Pusan National University) ;
  • Oh, You-Kwan (School of Chemical & Biomolecular Engineering, Pusan National University)
  • Received : 2019.11.13
  • Accepted : 2020.01.02
  • Published : 2020.03.25

Abstract

Microbial electrosynthesis has recently been considered a potentially sustainable biotechnology for converting carbon dioxide (CO2) into valuable biochemicals. In this study, bioelectrochemical acetate production from CO2 was studied in an H-type two-chambered reactor system with an anaerobic microbial consortium. Metal-rich mud flat was used as the inoculum and incubated electrochemically for 90 days under a cathode potential of -1.1 V (vs. Ag/AgCl). Four consecutive batch cultivations resulted in a high acetate concentration and productivity of 93 mmol/L and 7.35 mmol/L/day, respectively. The maximal coulombic efficiency (rate of recovered acetate from supplied electrons) was estimated to be 64%. Cyclic voltammetry showed a characteristic reduction peak at -0.2~-0.4 V, implying reductive acetate generation on the cathode electrode. Furthermore, several electroactive acetate-producing microorganisms were identified based on denaturing- gradient-gel-electrophoresis (DGGE) and 16S rRNA sequence analyses. These results suggest that the mud flat can be used effectively as a microbial source for bioelectrochemical CO2 conversion.

Keywords

References

  1. Zhu, Q., 2019, "Developments on $CO_2$-utilization technologies", Clean Energy, 3(2), 85-100. https://doi.org/10.1093/ce/zkz008
  2. Seo, H., Kim, H., and Jeon, E., 2019, "Environmental improvement effect and social benefit: Focusing on bio-heavy oil power generation", New. Renew. Energy, 15(3), 85-92. https://doi.org/10.7849/ksnre.2019.9.15.3.085
  3. Kim, B., Praveenkumar, R., Kim, D.M., Lee, K., Lee, Y.C., and Oh, Y.K., 2016, "Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacteria populations", Bioresour. Technol., 219, 608-613. https://doi.org/10.1016/j.biortech.2016.08.034
  4. Oh, Y.K., Hwang, K.R., Kim, C., Kim, J.R., and Lee J.S., 2018, "Recent developments and key barriers to advanced biofuels: A short review", Bioresour. Technol., 257, 320-333. https://doi.org/10.1016/j.biortech.2018.02.089
  5. Rojas, M.D.P.A., Zaiat, M., Gonzalez, E.R., De Wever, H., and Pant, D., 2018, "Effect of the electric supply interruption on a microbial electrosynthesis system converting inorganic carbon into acetate", Bioresour. Technol., 266, 203-210. https://doi.org/10.1016/j.biortech.2018.06.074
  6. Rabaey, K., and Rozendal, R.A., 2010, "Microbial electrosynthesis-revisiting the electrical route for microbial production", Nat. Rev. Microbiol., 8(10), 706-716. https://doi.org/10.1038/nrmicro2422
  7. Xiang, Y., Liu, G., Zhang, R., Lu, Y., and Luo, H., 2017, "High efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane", Bioresour. Technol., 233, 227-235. https://doi.org/10.1016/j.biortech.2017.02.104
  8. Byun, Y.H., and Park, N., 2018, "Analysis of international joint research into new and renewable energy technology", New. Renew. Energy, 14(1), 4-11. https://doi.org/10.7849/ksnre.2018.3.14.1.004
  9. Karthikeyan, R., Singh, R., and Bose, A., 2019, "Microbial electron uptake in microbial electrosynthesis: a minireview", J. Ind. Microbiol. Biotechnol., 46(9-10), 1419-1426. https://doi.org/10.1007/s10295-019-02166-6
  10. Bajracharya, S., Yuliasni, R., Vanbroekhoven, K., Buisman, C.J.N., Strik, D.P.B.T.B., and Pant, D., 2017, "Long-term operation of microbial electrosynthesis cell reducing $CO_2$ to multi-carbon chemicals with a mixed culture avoiding methanogenesis", Bioelectrochemistry, 113, 26-34. https://doi.org/10.1016/j.bioelechem.2016.09.001
  11. Patil, S.A., Arends, J.B.A., Vanwonterghem, I., Van Meerbergen, J., Guo, K., Tyson, G.W., and Rabaey, K., 2015, "Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from $CO_2$", Environ. Sci. Technol., 49(14), 8833-8843. https://doi.org/10.1021/es506149d
  12. Im, C.H., Song, Y.E., Jeon, B.H., and Kim, J.R., 2016, "Biologically activated graphite fiber electrode for autotrophic acetate production from $CO_2$ in a bioelectrochemical system", Carbon. Lett., 20(1), 76-80. https://doi.org/10.5714/CL.2016.20.076
  13. Jiang, Y., Su, M., Zhang, Y., Zhan, G., Tao, Y., and Li, D., 2013, "Bioelectrochemical system for simultaneously production of methane and acetate from carbon dioxide at relatively high rate", Int. J. Hydrogen. Energy, 38(8), 3497-3502. https://doi.org/10.1016/j.ijhydene.2012.12.107
  14. Jourdin, L., Freguia, S., Donose, B.C., Chen, J., Wallace, G.G., Keller, J., and Flexer, V., 2014, "A novel carbon nanotube modified scaffold as an efficient biocathode, material for improved microbial electrosynthesis", J. Mater. Chem. A., 2(32), 13093- 13102. https://doi.org/10.1039/C4TA03101F
  15. Hwang, D.W., Lee, I.S., Choi, M., Kim, C.S., and Kim, H.C., 2015, "Evaluation of pollution level for organic matter and trace metals in sediments around Taehwa river estuary, Ulsan", Korean. J. Fish. Aquat. Sci., 48(4), 542-554. https://doi.org/10.5657/KFAS.2015.0542
  16. Wang, L., Trujillo, S., and Liu, H., 2019, "Selective inhibition of methanogenesis by acetylene in single chamber microbial electrolysis cells", Bioresour. Technol., 274, 557-560. https://doi.org/10.1016/j.biortech.2018.12.039
  17. Jiao, Y., Kappler, A., Croal, L.R., and Newman, D.K., 2005, "Isolation and characterization of a genetically tractable photoautotrophic Fe (II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1", Appl. Environ. Microbiol., 71(8), 4487-4496. https://doi.org/10.1128/AEM.71.8.4487-4496.2005
  18. Mayer, F., Enzmann, F., Lopez, A.M., and Holtmann, D., 2019, "Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide", Bioresour. Technol., 289, 1-10.
  19. Muyzer, G., De Waal, E.C., and Uitterlinden, A.G., 1993, "Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA", Appl. Environ. Microbiol., 59(3), 695-700. https://doi.org/10.1128/AEM.59.3.695-700.1993
  20. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J., 2017, "Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies", Int. J. Syst. Evol. Microbiol., 67(5), 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  21. Song, T.S., Fei, K., Zhang, H., Yuan, H., Yang, Y., Ouyang, P., and Xie, J., 2018, "High efficiency microbial electrosynthesis of acetate from carbon dioxide using a novel graphene-nickel foam as cathode", J. Chem. Technol. Biotechnol., 93(2), 457-466. https://doi.org/10.1002/jctb.5376
  22. Zhang, T., Nie, H., Bain, T.S., Lu, H., Cui, M., Snoeyenbos-West, O.L., and Lovely, D.R., 2013, "Improved cathode materials for microbial electrosynthesis", Energy Environ. Sci., 6(1), 217-224. https://doi.org/10.1039/C2EE23350A
  23. Fedorovich, V., Knighton, M.C., Pagaling, E., Ward, F.B., Free, A., and Goryanin, I., 2009, "Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell", Appl. Environ. Microbiol., 75(23), 7326-7334. https://doi.org/10.1128/AEM.01345-09
  24. Beecroft, N.J., Zhao, F., Varcoe, J.R., Slade, R.C.T., Thumser, A.E., and Avignone-Rossa, C., 2012, "Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose", Appl. Microbiol. Biotechnol., 93(1), 423-437. https://doi.org/10.1007/s00253-011-3590-y
  25. Shimoyama, T., Yamazawa, A., Ueno, Y., and Watanabe, K., 2009, "Phylogenetic analyses of bacterial communities developed in a cassette-electrode microbial fuel cell", Microbes. Environ., 24(2), 188-192. https://doi.org/10.1264/jsme2.ME09108
  26. Srinivas, T.N.R., Kumar, P.A., Sasikala, C., Ramana, C.V., and Imhoff, J.F., 2007, "Rhodobacter vinaykumarii sp. nov., a marine phototrophic alphaproteobacterium from tidal waters, and emended description of the genus Rhodobacter", Int. J. Syst. Evol. Microbiol., 57(Pt 9), 1984-1987. https://doi.org/10.1099/ijs.0.65077-0
  27. Kumar, S.S., Basu, S., and Bishnoi, N.R., 2017, "Effect of cathode environment on bioelectricity generation using a novel consortium in anode side of a microbial fuel cell", Biochem. Eng. J., 121, 17-24. https://doi.org/10.1016/j.bej.2017.01.014
  28. Vassilev, I., Hernandez, P.A., Batlle-Vilanova, P., Freuia, S., Kromer, J.O., Keller, J., and Virdis, B., 2018, "Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide", ACS. Sustain. Chem. Eng., 6(7), 8485-8493. https://doi.org/10.1021/acssuschemeng.8b00739
  29. Philips, J., Monballyu, E., Georg, S., De Paepe, K., Prevoteau, A., Rabaey, K., and Arends, J.B., 2018, "An Acetobacterium strain isolated with metallic iron as electron donor enhances iron corrosion by a similar mechanism as Sporomusa sphaeroides", FEMS Microbiol. Ecol., 95(2), fiy222.
  30. Nevin, K.P., Hensley, S.A., Franks, A.E., Summers, Z.M., Ou, J., Woodard, T.L., Snoeyenbos-West, O.L., and Lovley, D.R., 2011, "Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms", Appl. Environ. Microbiol., 77(9), 2882-2886. https://doi.org/10.1128/AEM.02642-10
  31. Morris, B.E., Henneberger, R., Huber, H., and Moissl-Eichinger, C., 2013, "Microbial syntrophy: interaction for the common good", FEMS Microbio. Rev., 37(3), 384-406. https://doi.org/10.1111/1574-6976.12019