References
-
Zhu, Q., 2019, "Developments on
$CO_2$ -utilization technologies", Clean Energy, 3(2), 85-100. https://doi.org/10.1093/ce/zkz008 - Seo, H., Kim, H., and Jeon, E., 2019, "Environmental improvement effect and social benefit: Focusing on bio-heavy oil power generation", New. Renew. Energy, 15(3), 85-92. https://doi.org/10.7849/ksnre.2019.9.15.3.085
- Kim, B., Praveenkumar, R., Kim, D.M., Lee, K., Lee, Y.C., and Oh, Y.K., 2016, "Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacteria populations", Bioresour. Technol., 219, 608-613. https://doi.org/10.1016/j.biortech.2016.08.034
- Oh, Y.K., Hwang, K.R., Kim, C., Kim, J.R., and Lee J.S., 2018, "Recent developments and key barriers to advanced biofuels: A short review", Bioresour. Technol., 257, 320-333. https://doi.org/10.1016/j.biortech.2018.02.089
- Rojas, M.D.P.A., Zaiat, M., Gonzalez, E.R., De Wever, H., and Pant, D., 2018, "Effect of the electric supply interruption on a microbial electrosynthesis system converting inorganic carbon into acetate", Bioresour. Technol., 266, 203-210. https://doi.org/10.1016/j.biortech.2018.06.074
- Rabaey, K., and Rozendal, R.A., 2010, "Microbial electrosynthesis-revisiting the electrical route for microbial production", Nat. Rev. Microbiol., 8(10), 706-716. https://doi.org/10.1038/nrmicro2422
- Xiang, Y., Liu, G., Zhang, R., Lu, Y., and Luo, H., 2017, "High efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane", Bioresour. Technol., 233, 227-235. https://doi.org/10.1016/j.biortech.2017.02.104
- Byun, Y.H., and Park, N., 2018, "Analysis of international joint research into new and renewable energy technology", New. Renew. Energy, 14(1), 4-11. https://doi.org/10.7849/ksnre.2018.3.14.1.004
- Karthikeyan, R., Singh, R., and Bose, A., 2019, "Microbial electron uptake in microbial electrosynthesis: a minireview", J. Ind. Microbiol. Biotechnol., 46(9-10), 1419-1426. https://doi.org/10.1007/s10295-019-02166-6
-
Bajracharya, S., Yuliasni, R., Vanbroekhoven, K., Buisman, C.J.N., Strik, D.P.B.T.B., and Pant, D., 2017, "Long-term operation of microbial electrosynthesis cell reducing
$CO_2$ to multi-carbon chemicals with a mixed culture avoiding methanogenesis", Bioelectrochemistry, 113, 26-34. https://doi.org/10.1016/j.bioelechem.2016.09.001 -
Patil, S.A., Arends, J.B.A., Vanwonterghem, I., Van Meerbergen, J., Guo, K., Tyson, G.W., and Rabaey, K., 2015, "Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from
$CO_2$ ", Environ. Sci. Technol., 49(14), 8833-8843. https://doi.org/10.1021/es506149d -
Im, C.H., Song, Y.E., Jeon, B.H., and Kim, J.R., 2016, "Biologically activated graphite fiber electrode for autotrophic acetate production from
$CO_2$ in a bioelectrochemical system", Carbon. Lett., 20(1), 76-80. https://doi.org/10.5714/CL.2016.20.076 - Jiang, Y., Su, M., Zhang, Y., Zhan, G., Tao, Y., and Li, D., 2013, "Bioelectrochemical system for simultaneously production of methane and acetate from carbon dioxide at relatively high rate", Int. J. Hydrogen. Energy, 38(8), 3497-3502. https://doi.org/10.1016/j.ijhydene.2012.12.107
- Jourdin, L., Freguia, S., Donose, B.C., Chen, J., Wallace, G.G., Keller, J., and Flexer, V., 2014, "A novel carbon nanotube modified scaffold as an efficient biocathode, material for improved microbial electrosynthesis", J. Mater. Chem. A., 2(32), 13093- 13102. https://doi.org/10.1039/C4TA03101F
- Hwang, D.W., Lee, I.S., Choi, M., Kim, C.S., and Kim, H.C., 2015, "Evaluation of pollution level for organic matter and trace metals in sediments around Taehwa river estuary, Ulsan", Korean. J. Fish. Aquat. Sci., 48(4), 542-554. https://doi.org/10.5657/KFAS.2015.0542
- Wang, L., Trujillo, S., and Liu, H., 2019, "Selective inhibition of methanogenesis by acetylene in single chamber microbial electrolysis cells", Bioresour. Technol., 274, 557-560. https://doi.org/10.1016/j.biortech.2018.12.039
- Jiao, Y., Kappler, A., Croal, L.R., and Newman, D.K., 2005, "Isolation and characterization of a genetically tractable photoautotrophic Fe (II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1", Appl. Environ. Microbiol., 71(8), 4487-4496. https://doi.org/10.1128/AEM.71.8.4487-4496.2005
- Mayer, F., Enzmann, F., Lopez, A.M., and Holtmann, D., 2019, "Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide", Bioresour. Technol., 289, 1-10.
- Muyzer, G., De Waal, E.C., and Uitterlinden, A.G., 1993, "Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA", Appl. Environ. Microbiol., 59(3), 695-700. https://doi.org/10.1128/AEM.59.3.695-700.1993
- Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J., 2017, "Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies", Int. J. Syst. Evol. Microbiol., 67(5), 1613-1617. https://doi.org/10.1099/ijsem.0.001755
- Song, T.S., Fei, K., Zhang, H., Yuan, H., Yang, Y., Ouyang, P., and Xie, J., 2018, "High efficiency microbial electrosynthesis of acetate from carbon dioxide using a novel graphene-nickel foam as cathode", J. Chem. Technol. Biotechnol., 93(2), 457-466. https://doi.org/10.1002/jctb.5376
- Zhang, T., Nie, H., Bain, T.S., Lu, H., Cui, M., Snoeyenbos-West, O.L., and Lovely, D.R., 2013, "Improved cathode materials for microbial electrosynthesis", Energy Environ. Sci., 6(1), 217-224. https://doi.org/10.1039/C2EE23350A
- Fedorovich, V., Knighton, M.C., Pagaling, E., Ward, F.B., Free, A., and Goryanin, I., 2009, "Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell", Appl. Environ. Microbiol., 75(23), 7326-7334. https://doi.org/10.1128/AEM.01345-09
- Beecroft, N.J., Zhao, F., Varcoe, J.R., Slade, R.C.T., Thumser, A.E., and Avignone-Rossa, C., 2012, "Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose", Appl. Microbiol. Biotechnol., 93(1), 423-437. https://doi.org/10.1007/s00253-011-3590-y
- Shimoyama, T., Yamazawa, A., Ueno, Y., and Watanabe, K., 2009, "Phylogenetic analyses of bacterial communities developed in a cassette-electrode microbial fuel cell", Microbes. Environ., 24(2), 188-192. https://doi.org/10.1264/jsme2.ME09108
- Srinivas, T.N.R., Kumar, P.A., Sasikala, C., Ramana, C.V., and Imhoff, J.F., 2007, "Rhodobacter vinaykumarii sp. nov., a marine phototrophic alphaproteobacterium from tidal waters, and emended description of the genus Rhodobacter", Int. J. Syst. Evol. Microbiol., 57(Pt 9), 1984-1987. https://doi.org/10.1099/ijs.0.65077-0
- Kumar, S.S., Basu, S., and Bishnoi, N.R., 2017, "Effect of cathode environment on bioelectricity generation using a novel consortium in anode side of a microbial fuel cell", Biochem. Eng. J., 121, 17-24. https://doi.org/10.1016/j.bej.2017.01.014
- Vassilev, I., Hernandez, P.A., Batlle-Vilanova, P., Freuia, S., Kromer, J.O., Keller, J., and Virdis, B., 2018, "Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide", ACS. Sustain. Chem. Eng., 6(7), 8485-8493. https://doi.org/10.1021/acssuschemeng.8b00739
- Philips, J., Monballyu, E., Georg, S., De Paepe, K., Prevoteau, A., Rabaey, K., and Arends, J.B., 2018, "An Acetobacterium strain isolated with metallic iron as electron donor enhances iron corrosion by a similar mechanism as Sporomusa sphaeroides", FEMS Microbiol. Ecol., 95(2), fiy222.
- Nevin, K.P., Hensley, S.A., Franks, A.E., Summers, Z.M., Ou, J., Woodard, T.L., Snoeyenbos-West, O.L., and Lovley, D.R., 2011, "Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms", Appl. Environ. Microbiol., 77(9), 2882-2886. https://doi.org/10.1128/AEM.02642-10
- Morris, B.E., Henneberger, R., Huber, H., and Moissl-Eichinger, C., 2013, "Microbial syntrophy: interaction for the common good", FEMS Microbio. Rev., 37(3), 384-406. https://doi.org/10.1111/1574-6976.12019