DOI QR코드

DOI QR Code

DECAY OF TURBULENCE IN FLUIDS WITH POLYTROPIC EQUATIONS OF STATE

  • Lim, Jeonghoon (Department of Astronomy and Space Science, Chungnam National University) ;
  • Cho, Jungyeon (Department of Astronomy and Space Science, Chungnam National University)
  • 투고 : 2019.10.10
  • 심사 : 2020.03.18
  • 발행 : 2020.04.30

초록

We present numerical simulations of decaying hydrodynamic turbulence initially driven by solenoidal (divergence-free) and compressive (curl-free) drivings. Most previous numerical studies for decaying turbulence assume an isothermal equation of state (EOS). Here we use a polytropic EOS, P ∝ ργ, with polytropic exponent γ ranging from 0.7 to 5/3. We mainly aim at determining the effects of γ and driving schemes on the decay law of turbulence energy, E ∝ t. We additionally study probability density function (PDF) of gas density and skewness of the distribution in polytropic turbulence driven by compressive driving. Our findings are as follows. First of all, we find that even if γ does not strongly change the decay law, the driving schemes weakly change the relation; in our all simulations, turbulence decays with α ≈ 1, but compressive driving yields smaller α than solenoidal driving at the same sonic Mach number. Second, we calculate compressive and solenoidal velocity components separately and compare their decay rates in turbulence initially driven by compressive driving. We find that the former decays much faster so that it ends up having a smaller fraction than the latter. Third, the density PDF of compressively driven turbulence with γ > 1 deviates from log-normal distribution: it has a power-law tail at low density as in the case of solenoidally driven turbulence. However, as it decays, the density PDF becomes approximately log-normal. We discuss why decay rates of compressive and solenoidal velocity components are different in compressively driven turbulence and astrophysical implication of our findings.

키워드

참고문헌

  1. Biskamp, D., & Muller, W.-C. 1999, Decay Laws for Three-Dimensional Magnetohydrodynamic Turbulence, Phys. Rev. Lett., 83, 2195 https://doi.org/10.1103/PhysRevLett.83.2195
  2. Bisnovatyi-Kogan, G. S. & Moiseenko, S. G. 2016, Isentropic "Shock Waves" in Numerical Simulations of Astrophysical Problems, Astrophys., 59, 1 https://doi.org/10.1007/s10511-016-9410-4
  3. Cho, J. & Lazarian, A. 2002, Compressible Sub-Alfvenic MHD Turbulence in Low-${\beta}$ Plasmas, Phys. Rev. Lett., 88, 245001 https://doi.org/10.1103/PhysRevLett.88.245001
  4. Cho, J., Lazarian, A., & Vishniac, E. T. 2002, Simulations of Magnetohydrodynamic Turbulence in a Strongly Magnetized Medium, ApJ, 564, 291 https://doi.org/10.1086/324186
  5. Davidovits, S. & Fisch, N. J. 2017, A Lower Bound on Adiabatic Heating of Compressed Turbulence for Simulation and Model Validation, ApJ, 838, 118 https://doi.org/10.3847/1538-4357/aa619f
  6. Federrath, C., Roman-Duval, J., Klessen, R. S., et al. 2010, Comparing the Statistics of Interstellar Turbulence in Simulations and Observations. Solenoidal versus Compressive Turbulence Forcing, A&A, 512, A81 https://doi.org/10.1051/0004-6361/200912437
  7. Federrath, C. & Banerjee, S. 2015, The Density Structure and Star Formation Rate of Non-isothermal Polytropic Turbulence, MNRAS, 448, 3297 https://doi.org/10.1093/mnras/stv180
  8. Federrath, C., Rathborne, J. M., Longmore, S. N., et al. 2017, The Link between Solenoidal Turbulence and Slow Star Formation in G0.253+0.016, Proc. IAU Symp. 322, 123
  9. Ferriere, K. M. 2001, The Interstellar Environment of our Galaxy, Rev. Mod. Phys., 73, 1031 https://doi.org/10.1103/RevModPhys.73.1031
  10. Glover, S. C. O. & Mac Low, M.-M. 2007, Simulating the Formation of Molecular Clouds. I. Slow Formation by Gravitational Collapse from Static Initial Conditions, ApJS, 169, 239 https://doi.org/10.1086/512238
  11. Glover, S. C. O. & Mac Low, M.-M. 2007, Simulating the Formation of Molecular Clouds. II. Rapid Formation from Turbulent Initial Conditions, ApJ, 659, 1317 https://doi.org/10.1086/512227
  12. Goldreich, P. & Sridhar, S. 1995, Toward a Theory of Interstellar Turbulence. II. Strong Alfvenic Turbulence, ApJ, 438, 763 https://doi.org/10.1086/175121
  13. Larson, R. B. 1981, Turbulence and Star Formation in Molecular Clouds, MNRAS, 194, 809 https://doi.org/10.1093/mnras/194.4.809
  14. Lesieur, M. 2008, Turbulence in Fluids (Dordrecht: Springer)
  15. Li, Y., Klessen, R. S., & Mac Low, M.-M. 2003, The Formation of Stellar Clusters in Turbulent Molecular Clouds: Effects of the Equation of State, ApJ, 592, 975 https://doi.org/10.1086/375780
  16. Mac Low, M.-M., Klessen, R. S., Burkert, A., & Smith, M. D. 1998, Kinetic Energy Decay Rates of Supersonic and Super-Alfvenic Turbulence in Star-Forming Clouds, Phys. Rev. Lett., 80, 2754 https://doi.org/10.1103/PhysRevLett.80.2754
  17. Mac Low, M.-M. & Klessen, R. S. 2004, Control of Star Formation by Supersonic Turbulence, Rev. Mod. Phys., 76, 125 https://doi.org/10.1103/RevModPhys.76.125
  18. Masunaga, H. & Inutsuka, S. 2000, A Radiation Hydrodynamical Model for Protostellar Collapse. II. The Second Collapse and the Birth of a Protostar, ApJ, 531, 350 https://doi.org/10.1086/308439
  19. Ostriker, E. C., Stone, J. M., & Gammie, C. F. 2001, Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models, ApJ, 546, 980 https://doi.org/10.1086/318290
  20. Padoan, P., Nordlund, A., & Jones, B. J. T. 1997, The Universality of the Stellar Initial Mass Function, MNRAS, 288, 145 https://doi.org/10.1093/mnras/288.1.145
  21. Padoan, P. & Nordlund, A. 2002, The Stellar Initial Mass Function from Turbulent Fragmentation, ApJ, 576, 870 https://doi.org/10.1086/341790
  22. Passot, T. & Vazquez-Semadeni, E. 1998, Density Probability Distribution in One-dimensional Polytropic Gas Dynamics, Phys. Rev. E, 58, 4501 https://doi.org/10.1103/PhysRevE.58.4501
  23. Scalo, J., Vazquez-Semadeni, E., Chappell, D., & Passot, T. 1998, On the Probability Density Function of Galactic Gas. I. Numerical Simulations and the Significance of the Polytropic Index, ApJ, 504, 835 https://doi.org/10.1086/306099
  24. Spaans, M. & Silk, J. 2000, The Polytropic Equation of State of Interstellar Gas Clouds, ApJ, 538, 115 https://doi.org/10.1086/309118
  25. Stone, J. M., Ostriker, E. C., & Gammie, C. F. 1998, Dissipation in Compressible Magnetohydrodynamic Turbulence, ApJL, 508, L99 https://doi.org/10.1086/311718
  26. Vazquez-Semadeni, E., Passot, T., & Pouquet, A. 1996, Influence of Cooling-induced Compressibility on the Structure of Turbulent Flows and Gravitational Collapse, ApJ, 473, 881 https://doi.org/10.1086/178200