DOI QR코드

DOI QR Code

POORLY STUDIED ECLIPSING BINARIES IN THE FIELD OF DO DRACONIS: V454 DRA AND V455 DRA

  • Kim, Yonggi (Chungbuk National University Observatory, Chungbuk National University) ;
  • Andronov, Ivan L. (Department "Mathematics, Physics and Astronomy", Odessa National Maritime University) ;
  • Andrych, Kateryna D. (Department "Mathematics, Physics and Astronomy", Odessa National Maritime University) ;
  • Yoon, Joh-Na (Chungbuk National University Observatory, Chungbuk National University) ;
  • Han, Kiyoung (Chungbuk National University Observatory, Chungbuk National University) ;
  • Chinarova, Lidia L. (Department "Mathematics, Physics and Astronomy", Odessa National Maritime University)
  • 투고 : 2020.02.17
  • 심사 : 2020.02.27
  • 발행 : 2020.04.30

초록

We report an analysis of two poorly studied eclipsing binary stars, GSC 04396-00605 and GSC 04395-00485 (recently named V455 Dra and V454 Dra, respectively). Photometric data of the two stars were obtained using the 1-m Korean telescope of the LOAO operated by KASI while monitoring the cataclysmic variable DO Dra in the frame of the Inter-Longitude Astronomy (ILA) project. We derived periods of 0.434914 and 0.376833 days as well as initial epochs JD 2456480.04281 and JD 2456479.0523, respectively, more accurate than previously published values by factors 9 and 6. The phenomenological characteristics of the mean light curves were determined using the New Algol Variable (NAV) algorithm. The individual times of maxima/minima (ToM) were determined using the newly developed software MAVKA, which outputs accurate parameters using "asymptotic parabola" approximations. The light curves were approximated using phenomenological and physical models. In the NAV algorithm, the phenomenological parameters are well determined. We derived physical parameters using the Wilson-Devinney model. In this model, the best-fit parameters are highly correlated, thus some of them were fixed to reasonable values. For both systems, we find evidence for the presence of a cool spot and estimate its parameters. Both systems can be classified as overcontact binaries of EW type.

키워드

참고문헌

  1. Andronov, I. L. 1994, (Multi-)Frequency Variations of Stars. Some Methods and Results, Odessa Astron. Publ., 7, 49
  2. Andronov, I. L. 2012, Phenomenological Modeling of the Light Curves of Algol-type Eclipsing Binary Stars, Astro-phys., 55, 536
  3. Andronov, I. L. 2020, Advanced Time Series Analysis of Generally Irregularly Spaced Signals: Beyond the Over-simplified Methods, in: P. Skoda et al. (eds.), Knowledge Discovery in Big Data from Astronomy and Earth Observation (Amsterdam: Elsevier), 191
  4. Andronov, I. L. & Marsakova, V. I. 2006, Variability of Long-period Pulsating Stars. I. Methods for Analyzing Observations, Astrophys., 49, 370 https://doi.org/10.1007/s10511-006-0037-8
  5. Andronov, I. L., Antoniuk, K. A., Augusto, P., et al. 2003, Inter-longitude Astronomy Project: Some Results and Perspectives, Astron. Astrophys. Trans., 22, 793 https://doi.org/10.1080/1055679031000124501
  6. Andronov, I. L., Chinarova, L. L., Han, W., et al. 2008, Multiple Timescales in Cataclysmic Binaries. The Low-field Magnetic Dwarf Nova DO Draconis, A&A, 486, 855 https://doi.org/10.1051/0004-6361:20079056
  7. Andronov, I. L., Kim, Y., Kim, Y.-H., et al. 2015, Phenomenological Modeling of Newly Discovered Eclipsing Binary 2MASS J18024395 + 4003309 = VSX J180243.9+400331, JASS, 32, 127
  8. Andronov, I. L., Andrych K. D., Antoniuk, K. A., et al. 2017a, Instabilities in Interacting Binary Stars, ASP Conf. Ser., 511, 43
  9. Andronov, I. L., Tkachenko, M.G., & Chinarova, L.L. 2017b, Comparative Analysis of Phenomenological Approximations for the Light Curves of Eclipsing Binary Stars with Additional Parameters, Astrophys., 60, 57 https://doi.org/10.1007/s10511-017-9462-0
  10. Andrych, K. D., Andronov, I. L., Chinarova L. L., & Marsakova V. I. 2015, "Asymptotic Parabola" Fits for Smoothing Generally Asymmetric Light Curves, Odessa Astron. Publ., 28, 158 https://doi.org/10.18524/1810-4215.2015.28.70612
  11. Andrych, K. D., Andronov, I. L., & Chinarova L.L. 2020, MAVKA: Program Of Statistically Optimal Determination Of Phenomenological Parameters Of Extrema. Parabolic Spline Algorithm and Analysis of Variability of the Semi-Regular Star Z UMa, J. Phys. Stud., 24, 1902 https://doi.org/10.30970/jps.24.1902
  12. Andrych, K. D. & Andronov, I. L. 2019, MAVKA: Software for Statistically Optimal Determination of Extrema, Open Eur. J. Variable Stars, 197, 65
  13. Bradstreet, D. H. 2005, Fundamentals of Solving Eclipsing Binary Light Curves Using Binary Maker 3, SASS, 24, 23
  14. Gaia Collaboration 2018, VizieR Online Data Catalog: Gaia DR2, 2018yCat.1345....0G
  15. Gaia Collaboration 2018, Gaia Data Release 2. Summary of the Contents and Survey Properties, A&A, 616, A1 https://doi.org/10.1051/0004-6361/201833051
  16. Han, K., Kim, Y., Andronov, I. L., et al. 2017, Quasi-periodic Oscillation of a Magnetic Cataclysmic Variable, DO Draconis, JASS, 34, 37
  17. Kazarovets, E. V., Samus, N. N., Durlevich, O.V., et al. 2015, The 81st Name-List of Variable Stars. Part I - RA 00h to 17h30, IBVS, 6151, 1
  18. Kallrath, J. & Milone, E. F. 2009, Eclipsing Binary Stars: Modeling and Analysis (New York: Springer)
  19. Kim, D.-H., Kim, Y., Yoon, J.-N., & Im, H.-S. 2019, Development of a Period Analysis Algorithm for Detecting Variable Stars in Time-Series Observational Data, JASS, 36, 283
  20. Kreiner, J. M., Kim, C.-H., Nha, I.-S. 2001, An Atlas of O-C Diagrams of Eclipsing Binary Stars (Cracow, Poland: Wydawnictwo Naukowe Akademii Pedagogicznej)
  21. Kreiner J. M., Rucinski S., Zola S. et al. 2003, Physical Parameters of Components in Close Binary Systems. I, A&A, 412, 465 https://doi.org/10.1051/0004-6361:20031456
  22. Marsakova, V. I. & Andronov, I. L. 1996, Local Fits of Signals with Asymptotic Branches, Odessa Astron. Publ., 9, 127
  23. Mikulasek, Z. 2015, Phenomenological Modelling of Eclipsing System Light Curves, A&A, 584, A8 https://doi.org/10.1051/0004-6361/201425244
  24. Samus, N. N., Kazarovets, E. V., Durlevich, O. V., et al. 2017, General Catalogue of Variable Stars: Version GCVS 5.1, Astron. Rep., 61, 80 https://doi.org/10.1134/S1063772917010085
  25. Tkachenko, M. G., Andronov, I. L., & Chinarova, L. L. 2016, Phenomenological Parameters of the Prototype Eclipsing Binaries Algol, ${\beta}$ Lyrae and W UMa, J. Phys. Stud., 20, 4902 https://doi.org/10.30970/jps.20.4902
  26. Vavilova, I. B., Yatskiv, Ya. S., Pakuliak, L. K., et al. 2017, UkrVO Astroinformatics Software and Web-services, Proc. IAU, 12, 361
  27. Virnina, N. A. 2010, New Binary Systems With Asymmetric Light Curves, Odessa Astron. Publ., 23, 143
  28. Virnina, N. A. 2011, "Tsessevich" Project: An Attempt to Find the System YY Dra. I, Open Eur. J. Variable Stars, 133, 1
  29. Wilson R. E. 1979, Eccentric Orbit Generalization and Simultaneous Solution of Binary Star Light and Velocity Curves, ApJ, 234, 1054 https://doi.org/10.1086/157588
  30. Wilson R. E. 1994, Binary-star light Curve Models, PASP, 106, 921 https://doi.org/10.1086/133464
  31. Wilson R. E. & Devinney, E. J. 1971, Realization of Accurate Close-Binary Light Curves: Application to MR Cygni, ApJ, 166, 605 https://doi.org/10.1086/150986
  32. Zo la, S., Kolonko, M., & Szczech, M. 1997, Analysis of a Photoelectric Light Curve of the W UMa-Type Binary ST Ind, A&A, 324, 1010
  33. Zo la, S., Gazeas, K., Kreiner, J. M., et al. 2010, Physical Parameters of Components in Close Binary Systems - VII, MNRAS, 408, 464 https://doi.org/10.1111/j.1365-2966.2010.17129.x