DOI QR코드

DOI QR Code

THE FRACTIONAL SCHRÖDINGER-POISSON SYSTEMS WITH INFINITELY MANY SOLUTIONS

  • Jin, Tiankun (College of Teacher Education Daqing Normal University) ;
  • Yang, Zhipeng (Department of Mathematics Yunnan Normal University)
  • Received : 2019.02.20
  • Accepted : 2019.07.25
  • Published : 2020.03.01

Abstract

In this paper, we study the existence of infinitely many large energy solutions for the supercubic fractional Schrödinger-Poisson systems. We consider different superlinear growth assumptions on the non-linearity, starting from the well-know Ambrosetti-Rabinowitz type condition. We obtain three different existence results in this setting by using the Fountain Theorem, all these results extend some results for semelinear Schrödinger-Poisson systems to the nonlocal fractional setting.

Keywords

References

  1. A. Ambrosetti, On Schrodinger-Poisson systems, Milan J. Math. 76 (2008), 257-274. https://doi.org/10.1007/s00032-008-0094-z
  2. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
  3. A. Azzollini, Concentration and compactness in nonlinear Schrodinger-Poisson system with a general nonlinearity, J. Differential Equations 249 (2010), no. 7, 1746-1763. https://doi.org/10.1016/j.jde.2010.07.007
  4. P. Bartolo, V. Benci, and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal. 7 (1983), no. 9, 981-1012. https://doi.org/10.1016/0362-546X(83)90115-3
  5. T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal. 20 (1993), no. 10, 1205-1216. https://doi.org/10.1016/0362-546X(93)90151-H
  6. V. Benci and D. Fortunato, An eigenvalue problem for the Schrodinger-Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998), no. 2, 283-293. https://doi.org/10.12775/TMNA.1998.019
  7. Z. Binlin, G. Molica Bisci, and R. Servadei, Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity 28 (2015), no. 7, 2247-2264. https://doi.org/10.1088/0951-7715/28/7/2247
  8. G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A 112 (1978), no. 2, 332-336 (1979).
  9. G. Cerami, On the existence of eigenvalues for a nonlinear boundary value problem, Ann. Mat. Pura Appl. (4) 124 (1980), 161-179. https://doi.org/10.1007/BF01795391
  10. X. Chang and Z.-Q. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differential Equations 256 (2014), no. 8, 2965-2992. https://doi.org/10.1016/j.jde.2014.01.027
  11. S.-J. Chen and C.-L. Tang, High energy solutions for the superlinear Schrodinger-Maxwell equations, Nonlinear Anal. 71 (2009), no. 10, 4927-4934. https://doi.org/10.1016/j.na.2009.03.050
  12. E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
  13. L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbf{R}^N$, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 4, 787-809. https://doi.org/10.1017/S0308210500013147
  14. N. S. Landkof, Foundations of Modern Potential Theory, translated from the Russian by A. P. Doohovskoy, Springer-Verlag, New York, 1972.
  15. N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2
  16. N. Laskin, Fractional Schrodinger equation, Phys. Rev. E (3) 66 (2002), no. 5, 056108, 7 pp. https://doi.org/10.1103/PhysRevE.66.056108
  17. L. Li and S.-J. Chen, Infinitely many large energy solutions of superlinear Schrodinger-Maxwell equations, Electron. J. Differential Equations 2012 (2012), no. 224, 9 pp.
  18. P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1987), no. 1, 33-97. http://projecteuclid.org/euclid.cmp/1104116712 https://doi.org/10.1007/BF01205672
  19. S. Liu, On ground states of superlinear p-Laplacian equations in $\mathbf{R}^N$, J. Math. Anal. Appl. 361 (2010), no. 1, 48-58. https://doi.org/10.1016/j.jmaa.2009.09.016
  20. S. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal. 73 (2010), no. 3, 788-795. https://doi.org/10.1016/j.na.2010.04.016
  21. W. Liu, Existence of multi-bump solutions for the fractional Schrodinger-Poisson system, J. Math. Phys. 57 (2016), no. 9, 091502, 17 pp. https://doi.org/10.1063/1.4963172
  22. G. Molica Bisci, D. Repovs, and R. Servadei, Nontrivial solutions of superlinear nonlocal problems, Forum Math. 28 (2016), no. 6, 1095-1110. https://doi.org/10.1515/forum-2015-0204
  23. E. G. Murcia and G. Siciliano, Positive semiclassical states for a fractional Schrodinger-Poisson system, Differential Integral Equations 30 (2017), no. 3-4, 231-258. http://projecteuclid.org/euclid.die/1487386824
  24. S. Secchi, Ground state solutions for nonlinear fractional Schrodinger equations in $\mathbb{R}^N$, J. Math. Phys. 54 (2013), no. 3, 031501, 17 pp. https://doi.org/10.1063/1.4793990
  25. M. Struwe, Variational Methods, Springer-Verlag, Berlin, 1990. https://doi.org/10.1007/978-3-662-02624-3
  26. K. Teng, Multiple solutions for a class of fractional Schrodinger equations in $\mathbb{R}^N$, Nonlinear Anal. Real World Appl. 21 (2015), 76-86. https://doi.org/10.1016/j.nonrwa.2014.06.008
  27. K. Teng, Existence of ground state solutions for the nonlinear fractional Schrodinger-Poisson system with critical Sobolev exponent, J. Differential Equations 261 (2016), no. 6, 3061-3106. https://doi.org/10.1016/j.jde.2016.05.022
  28. M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhauser Boston, Inc., Boston, MA, 1996. https://doi.org/10.1007/978-1-4612-4146-1
  29. M.-H. Yang and Z.-Q. Han, Existence and multiplicity results for the nonlinear Schrodinger-Poisson systems, Nonlinear Anal. Real World Appl. 13 (2012), no. 3, 1093-1101. https://doi.org/10.1016/j.nonrwa.2011.07.008
  30. Z. Yang, Y. Yu, and F. Zhao, The concentration behavior of ground state solutions for a critical fractional Schrodinger-Poisson system, Math. Nachr. 292 (2019), 1837-1868. https://doi.org/10.1002/mana.201700398
  31. Z. Yang, Y. Yu, and F. Zhao, Concentration behavior of ground state solutions for a fractional Schrodinger-Poisson system involving critical exponent, Commun. Contemp. Math. (2019), 1850027. https://doi.org/10.1142/S021919971850027X
  32. Y. Yu, F. Zhao and L. Zhao, The concentration behavior of ground state solutions for a fractional Schrodinger-Poisson system, Calc. Var. Partial Differential Equations 56 (2017), no. 4, Art. 116, 25 pp. https://doi.org/10.1007/s00526-017-1199-4
  33. J. Zhang, J. M. do O, and M. Squassina, Fractional Schrodinger-Poisson systems with a general subcritical or critical nonlinearity, Adv. Nonlinear Stud. 16 (2016), no. 1, 15-30. https://doi.org/10.1515/ans-2015-5024
  34. L. Zhao, H. Liu, and F. Zhao, Existence and concentration of solutions for the Schrodinger-Poisson equations with steep well potential, J. Differential Equations 255 (2013), no. 1, 1-23. https://doi.org/10.1016/j.jde.2013.03.005
  35. L. Zhao and F. Zhao, On the existence of solutions for the Schrodinger-Poisson equations, J. Math. Anal. Appl. 346 (2008), no. 1, 155-169. https://doi.org/10.1016/j.jmaa.2008.04.053