References
- Abdollahi, M.S., Najafi, M., Bafghi, A.Y. and Marji, M.F. (2019), "A 3D numerical model to determine suitable reinforcement strategies for passing TBM through a fault zone, a case study: Safaroud water transmission tunnel", Iran Tunnel. Undergr. Space Technol., 88, 186-199. https://doi.org/10.1016/j.tust.2019.03.008
- Adachi, T., Kimura, M. and Kishad, K. (2003), "Experimental study on the distribution of earth pressure and surface settlement through three-dimensional trapdoor tests", Tunnel. Undergr. Space Technol., 18(2-3), 171-183. https://doi.org/10.1016/S0886-7798(03)00025-7
- Attewell, P.B. and Yeates, J. (1984), Ground Movements and their Effects on Structures, Blackie and Son Ltd., Attewell, P.B. and Taylor, R.K.
- Bi, J., Zhou, X.P. and Qian, Q.H. (2016), "The 3D numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads", Rock Mech. Rock Eng., 49(5), 1611-1627. https://doi.org/10.1007/s00603-015-0867-y
- Bobet, A. (2001), "Analytical solutions for shallow tunnels in saturated ground", J. Eng. Mech., 127(12), 1258-1266. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:12(1258)
- Boscardin, M.D. and Cording, E.J. (1989), "Building response to excavation-induced settlement", J. Geotech. Eng., 115(1), 1-21. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:1(1)
- Boumaaza, M., Bezazi, A., Bouchelaghem, H., Benzennache, N., Amziane, S. and Scarpa, F. (2017), "Behavior of pre-cracked deep beams with composite materials repairs", Struct. Eng. Mech., Int. J., 63(4), 43-56. https://doi.org/10.12989/sem.2017.63.5.575
- Broms, B.B. and Bennermark, H. (1967), "Stability of clay at vertical openings", J. Soil Mech. Found. Div., 93, 71-94. https://doi.org/10.1061/JSFEAQ.0000946
- Cai, M., Kaiser, P.K., Morioka, H., Minami, M. and Maejima, T. (2007), "FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations", Int. J. Rock Mech. Mining Sci., 44(4), 550-564. https://doi.org/10.1016/j.ijrmms.2006.09.013
- Chakeri, H. and U nver, B. (2014), "A new equation for estimating the maximum surface settlement above tunnels excavated in soft ground", Environ. Earth, 71(7), 3195-3210. https://doi.org/10.1007/s12665-013-2707-2
- Chakeri, H., Ozcelik, Y. and Unver, B. (2013), "Effects of important factors on surface settlement prediction for metro tunnel excavated by EPB", Tunnel. Undergr. Space Technol., 36, 14-23. https://doi.org/10.1016/j.tust.2013.02.002
- Chou, W.-I. and Bobet, A. (2002), "Predictions of ground deformations in shallow tunnels in clay", Tunnel. Undergr. Space Technol., 17(1), 3-19. https://doi.org/10.1016/S0886-7798(01)00068-2
- Clough, G.W., Sweeney, S.P. and Finno, R.J. (1983), "Measured soil response to EPB shield tunneling", J. Geotech. Geoenviron. Eng., 109(2), 131-149. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:2(131)
- Cundall, P.A. (1971), "A computer model for simulating progressive large scale movements in blocky rock systems", Proceeding of the Symposium of the International Society for Rock Mechanics, Nancy, France, Vol. 1, No. 8.
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemble", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
- Davis, E.H., Gunn, M.J., Mair, R.J. and Seneviratne, H.N. (1980), "The stability of shallow tunnels and underground openings in cohesive material", Geotechnique, 30(4), 397-416. https://doi.org/10.1680/geot.1980.30.4.397
- Dindarloo, S.R. and Siami-Irdemoosa, E. (2015), "Maximum surface settlement based classification of shallow tunnels in soft ground", Tunnel. Undergr. Space Technol., 49(1), 320-327. https://doi.org/10.1016/j.tust.2015.04.021
- Franzius, J., Potts, D. and Burland, J. (2005), "The influence of soil anisotropy and K0 on ground surface movements resulting from tunnel excavation", Geotechnique, 55(3), 189-199. https://doi.org/10.1680/geot.2005.55.3.189
- Goh, A.T.C., Zhang, W.G., Zhang, Y.M., Xiao, Y. and Xiang, Y.Z. (2017), "Determination of EPB tunnelrelated maximum surface settlement: A multivariate adaptive regression splines approach", Bull. Eng. Geol. Environ., 77, 489-500. https://doi.org/10.1007/s10064-016-0937-8
- Haeri, H. (2015), "Simulating the crack propagation mechanism of pre-cracked concrete specimens under shear loading conditions", Strength Mater., 47(4), 618-632. https://doi.org/10.1007/s11223-015-9698-z
- Haeri, H. and Marji, M.F. (2016), "Simulating the crack propagation and cracks coalescence underneath TBM disc cutters", Arab. J. Geosci., 9(2), 124. https://doi.org/10.1007/s12517-015-2137-4
- Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, Int. J., 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
- Haeri, H., Khaloo, A. and Marji, M.F. (2015), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6
- Haeri, H., Sarfarazi, V. and Hedayat, A. (2016), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., Int. J., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939
- Hosseini_Nasab, H. and Fatehi Marji, M. (2007), "A semi-infinite higher-order displacement discontinuity method and its application to the quasistatic analysis of radial cracks produced by blasting", J. Mech. Mater. Struct., 2(3), 439-458. https://doi.org/10.2140/jomms.2007.2.439
- Kasper, T. and Meschke, G. (2004), "A 3D finite element simulationmodel for TBM tunnelling in soft ground", Int. J. Numer. Anal. Methods Geomech., 28(14), 1441-1460. https://doi.org/10.1002/nag.395
- Lak, M., Marji, M.F., Bafghi, A.Y. and Abdollahipour, A. (2019), "Analytical and numerical modeling of rock blasting operations using a two-dimensional elasto-dynamic Green's function", Int. J. Rock Mech. Mining Sci., 114, 208-217. https://doi.org/10.1016/j.ijrmms.2018.12.022
- Lee, C.J., Wu, B.R. and Chen, H.T. (2006), "Tunnel stability and arching effects during tunneling in soft clayey soil", Tunnel. Undergr. Space Technol., 21(2), 119-132. https://doi.org/10.1016/j.tust.2005.06.003
- Liao, S.-M., Liu, J.-H., Wang, R.-L. and Li, Z.-M. (2009), "Shield tunneling and environment protection in Shanghai soft ground", Tunnel. Undergr. Space Technol., 24(4), 454-465. https://doi.org/10.1016/j.tust.2008.12.005
- Loganathan, N. and Poulos, H. (1998), "Analytical prediction for tunneling-induced ground movements in clays", J. Geotech. Geoenviron. Eng., 124(9), 846-856. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(846)
- Mair, R.J. (1979), "Centrifugal Modelling of Tunnel Construction in Soft Clay", Ph.D. Thesis; Cambridge University.
- Mair, R.J. and Taylor, R.N. (1997), "Bored tunnelling in the urban environment", Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering, Vol. 4, pp. 2353-2385.
- Mair, R.J., Gunn, M.J. and O'Reilly, M.P. (1981), "Centrifugal testing of model tunnels in soft clay", Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 323-328.
- Marji, M.F. (2015), "Simulation of crack coalescence mechanism underneath single and double disc cutters by higher order displacement discontinuity method", J. Central South Univ., 22(3), 1045-1054. https://doi.org/10.1007/s11771-015-2615-6
- Marji, M., Hosseini Nasab, H. and Hossein Morshedi, A. (2009), "Numerical modeling of crack propagation in rocks under TBM disc cutters", J. Mech. Mater. Struct., 4(3), 605-627. https://doi.org/10.2140/jomms.2009.4.605
- Melis, M., Medina, L. and Rodriguez, J.M. (2002), "Prediction and analysis of subsidence induced by shield tunnelling in the Madrid Metro extension", Can. Geotech. J., 39(6), 1273-1287. https://doi.org/10.1139/t02-073
- Mirsalari, S.E., Fatehi Marji, M., Gholamnejad, J. and Najafi, M. (2017), "A boundary element/finite difference analysis of subsidence phenomenon due to underground structures", J. Mining Environ., 8(2), 237-253. https://doi.org/10.22044/JME.2016.759
- Monfared, M.M. (2017), "Mode III SIFs for interface cracks in an FGM coating-substrate system", Struct. Eng. Mech., Int. J., 64(1), 78-95. https://doi.org/10.12989/sem.2017.64.1.071
- Nabil, B., Abdelkader, B., Miloud, A. and Noureddine, B. (2012), "On the mixed-mode crack propagation in FGMs plates: comparison of different criteria", Struct. Eng. Mech., Int. J., 61(3), 201-213. https://doi.org/10.12989/sem.2017.61.3.371
- Neaupane, K.M. and Adhikari, N. (2006), "Prediction of tunnelinginduced ground movement with the multi-layer perceptron", Tunnel. Undergr. Space Technol., 21(2), 151-159. https://doi.org/10.1016/j.tust.2005.07.001
- Ng, C.W., Shi, J. and Hong, Y. (2013), "Three-dimensional centrifuge modeling of basement excavation effects on an existing tunnel in dry sand", Can. Geotech. J., 50(8), 874-888. https://doi.org/10.1139/cgj-2012-0423
- Nikadat, N. and Marji, M.F. (2016), "Analysis of stress distribution around tunnels by hybridized FSM and DDM considering the influences of joints parameters", Geomech. Eng., Int. J., 11(2), 269-288. https://doi.org/10.12989/gae.2016.11.2.269
- Nikadat, N., Fatehi, M. and Abdollahipour, A. (2015), "Numerical modelling of stress analysis around rectangular tunnels with large discontinuities (fault) by a hybridized indirect BEM", J. Central South Univ., 22(11), 4291-4299. https://doi.org/10.1007/s11771-015-2977-9
- O'Reilly, M.P. and New, B.M. (1982), "Settlements above tunnels in the United Kingdom-Their magnitude and prediction", Tunnelling '82. Proceedings of the 3rd International Symposium, Institution of Mining & Metallurgy, London, UK, pp. 173-181.
- Oda, M. and Kazama, H. (1998), "Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils", Geotechnique, 48(4), 465-481. https://doi.org/10.1680/geot.1998.48.4.465
- Ou, C.-Y., Teng, F.-C. and Wang, I.-W. (2008), "Analysis and design of partial ground improvement in deep excavations", Comput. Geotech., 35(4), 576-584. https://doi.org/10.1016/j.compgeo.2007.09.005
- Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement", Struct. Eng. Mech., Int. J., 52(4) 167-181. https://doi.org/10.12989/sem.2014.52.4.829
- Panaghi, K., Golshani, A. and Takemura, T. (2015), "Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests", Geomech. Eng., Int. J., 9(6), 793-813. https://doi.org/10.12989/gae.2015.9.6.793
- Papastamos, G., Stiros, S., Saltogianni, V. and Kontogianni, V. (2014), "3-D strong tilting observed in tall, isolated brick chimneys during the excavation of the Athens Metro", Appl. Geomatics, 7(2), 115-121. https://doi.org/10.1007/s12518-014-0138-8
- Park, K. (2004), "Elastic solution for tunneling-induced ground movements in clays", Int. J. Geomech., 4(4), 310-318. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:4(310)
- Peck, R.B. (1969), "Deep excavations and tunneling in soft ground", Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, pp. 225-290.
- PFC 2D (particle flow code in two dimensions) (1999), version 1.1. Itasca Consulting Group; Inc., Minneapolis, MN, USA, ICG.
- Potyondy, D.O. and Cundall, P.A. (2004), "A bounded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
- Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression", Comput. Concrete, Int. J., 11(2), 55-65. https://doi.org/10.12989/cac.2013.11.2.149
- Rothenburg, L. and Bathurst, R.J. (1989), "Analytical study of induced anisotropy in idealized granular materials", Geotechnique, 39(4), 601-614. https://doi.org/10.1680/geot.1989.39.4.601
- Suwansawat, S. and Einstein, H.H. (2006), "Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling", Tunnel. Undergr. Space Technol., 21(2), 133-150. https://doi.org/10.1016/j.tust.2005.06.007
- Wan, M.S.P., Standing, J.R., Potts, D.M. and Burland, J.B. (2016), "Measured short-term ground surface response to EPBM tunneling in London Clay", Geotechnique, 67(5), 420-445. https://doi.org/10.1680/jgeot.16.P.099
- Wang, F., Gou, B. and Qin, Y. (2013), "Modeling tunnelinginduced ground surface settlement development using a wavelet smooth relevance vector machine", Comput. Geotech., 54(1), 125-132. https://doi.org/10.1016/j.compgeo.2013.07.004
- Wu, X., Liu, H., Zhang, L., Skibniewski, M.J., Deng, Q. and Teng, J. (2015), "A dynamic Bayesian network based approach to safety decision supportintunnelconstruction", Reliab. Eng. Syst. Safe., 134(1), 157-168. https://doi.org/10.1016/j.ress.2014.10.021
- Yoo, C. and Lee, D. (2008), "Deep excavation-induced ground surface movement characteristics-A numerical investigation", Comput. Geotech., 35(2), 231-252. https://doi.org/10.1016/j.compgeo.2007.05.002
- Zhang, L., Wu, X., Chen, Q., Skibniewski, M.J. and Zhong, J. (2015), "Developing a cloud model based risk assessment methodology for tunnel-induced damage to existing pipelines", Stochastic Environ. Res. Risk Assess., 29(2), 513-526. https://doi.org/10.1007/s00477-014-0878-3
- Zhou, X.P. and Bi, J. (2018), "Numerical simulation of thermal cracking in rocks based on general particle dynamics", J. Eng. Mech., 144(1), 04017156. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001378
Cited by
- Study on mechanical behavior and damage process of concrete with initial damage under eccentric load vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-95964-x