Acknowledgement
The authors thank students and colleagues at University of Guanajuato for their technical support and express their appreciation to the dairy producers for the contributions they made during this study.
References
- Argaw A. Review on epidemiology of clinical and subclinical mastitis on dairy cows. Food Sci Qual Manag. 2016;52(6):56-65.
- Monistero V, Graber HU, Pollera C, Cremonesi P, Castiglioni B, Bottini E, et al. Staphylococcus aureus isolates from bovine mastitis in eight countries: genotypes, detection of genes encoding different toxins and other virulence genes. Toxins (Basel). 2018;10(6):247. https://doi.org/10.3390/toxins10060247
- Thiran E, Di Ciccio PA, Graber HU, Zanardi E, Ianieri A, Hummerjohann J. Biofilm formation of Staphylococcus aureus dairy isolates representing different genotypes. J Dairy Sci. 2018;101(2):1000-1012. https://doi.org/10.3168/jds.2017-13696
- Dhanawade NB, Kalorey DR, Srinivasan R, Barbuddhe SB, Kurkure NV. Detection of intercellular adhesion genes and biofilm production in Staphylococcus aureus isolated from bovine subclinical mastitis. Vet Res Commun. 2010;34(1):81-89. https://doi.org/10.1007/s11259-009-9326-0
- Pereyra EA, Picech F, Renna MS, Baravalle C, Andreotti CS, Russi R, et al. Detection of Staphylococcus aureus adhesion and biofilm-producing genes and their expression during internalization in bovine mammary epithelial cells. Vet Microbiol. 2016;183:69-77. https://doi.org/10.1016/j.vetmic.2015.12.002
- Alva-Murillo N, Lopez-Meza JE, Ochoa-Zarzosa A. Nonprofessional phagocytic cell receptors involved in Staphylococcus aureus internalization. Biomed Res Int. 2014;2014:538546. https://doi.org/10.1155/2014/538546
- Cote-Gravel J, Malouin F. Symposium review: features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies. J Dairy Sci. 2019;102(5):4727-4740. https://doi.org/10.3168/jds.2018-15272
- Val-Arreola D, Kebreab E, France J. Modeling small-scale dairy farms in central Mexico using multi-criteria programming. J Dairy Sci. 2006;89(5):1662-1672. https://doi.org/10.3168/jds.S0022-0302(06)72233-0
- Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food (MX). Current Situation and Perspectives of Milk Production in Mexico: Economic Edition. Mexico City: SAGARPA; 2001.
- Ramirez-Rivera EJ, Rodriguez-Miranda J, Huerta-Mora IR, Cardenas-Cagal A, Juarez-Barrientos JM. Tropical milk production systems and milk quality: a review. Trop Anim Health Prod. 2019;51(6):1295-1305. https://doi.org/10.1007/s11250-019-01922-1
- Hogan JS, Gonzales RN, Harmon RJ, Nickerson SC, Oliver SP, Pankey JW, et al. Laboratory Handbook on Bovine Mastitis. New Prague: National Mastitis Council; 2009.
- Ochoa-Zarzosa A, Loeza-Lara PD, Torres-Rodriguez F, Loeza-Angeles H, Mascot-Chiquito N, Sanchez-Baca S, et al. Antimicrobial susceptibility and invasive ability of Staphylococcus aureus isolates from mastitis from dairy backyard systems. Antonie Van Leeuwenhoek. 2008;94(2):199-206. https://doi.org/10.1007/s10482-008-9230-6
- House HK, Anderson NG. Maximizing comfort in tiestall housing. Vet Clin North Am Food Anim Pract. 2019;35(1):77-91. https://doi.org/10.1016/j.cvfa.2018.10.004
- Metzger SA, Hernandez LL, Skarlupka JH, Suen G, Walker TM, Ruegg PL. Influence of sampling technique and bedding type on the milk microbiota: results of a pilot study. J Dairy Sci. 2018;101(7):6346-6356. https://doi.org/10.3168/jds.2017-14212
- Abebe R, Hatiya H, Abera M, Megersa B, Asmare K. Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet Res. 2016;12(1):270-281. https://doi.org/10.1186/s12917-016-0905-3
- Vakkamaki J, Taponen S, Heikkila AM, Pyorala S. Bacteriological etiology and treatment of mastitis in Finnish dairy herds. Acta Vet Scand. 2017;59(1):33-42. https://doi.org/10.1186/s13028-017-0301-4
- Varela-Ortiz DF, Barboza-Corona JE, Gonzalez-Marrero J, Leon-Galvan MF, Valencia-Posadas M, Lechuga-Arana AA, et al. Antibiotic susceptibility of Staphylococcus aureus isolated from subclinical bovine mastitis cases and in vitro efficacy of bacteriophage. Vet Res Commun. 2018;42(3):243-250. https://doi.org/10.1007/s11259-018-9730-4
- Ferreira AM, Martins KB, Silva VR, Mondelli AL, Cunha ML. Correlation of phenotypic tests with the presence of the blaZ gene for detection of beta-lactamase. Braz J Microbiol. 2017;48(1):159-166. https://doi.org/10.1016/j.bjm.2016.10.011
- Shrivastava N, Sharma V, Nayak A, Shrivastava AB, Sarkhel BC, Shukla PC, et al. Prevalence and characterization of methicillin-resistant Staphylococcus aureus (MRSA) mastitis in dairy cattle in Jabalpur, Madhya Pradesh. J Anim Res. 2017;7(1):77-84. https://doi.org/10.5958/2277-940X.2017.00011.0
- Elhassan MM, Ozbak HA, Hemeg HA, Elmekki MA, Ahmed LM. Absence of the mecA gene in methicillin resistant Staphylococcus aureus isolated from different clinical specimens in Shendi City, Sudan. Biomed Res Int. 2015;2015:895860. https://doi.org/10.1155/2015/895860
- Yang Y, Jiang X, Chai B, Ma L, Li B, Zhang A, et al. ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. Bioinformatics. 2016;32(15):2346-2351. https://doi.org/10.1093/bioinformatics/btw136
- de Oliveira TL, Cavalcante FS, Chamon RC, Ferreira RB, Dos Santos KR. Genetic mutations in the quinolone resistance-determining region are related to changes in the epidemiological profile of methicillin-resistant Staphylococcus aureus isolates. J Glob Antimicrob Resist. 2019;19:236-240. https://doi.org/10.1016/j.jgar.2019.05.026
- Raza A, Muhammad G, Sharif S, Atta A. Biofilm producing Staphylococcus aureus and bovine mastitis: a review. Mol Microbiol Res. 2013;3:1-8.
- Balasubramanian D, Harper L, Shopsin B, Torres VJ. Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis. 2017;75(1):1-13.
- Stenz L, Francois P, Whiteson K, Wolz C, Linder P, Schrenzel J. The CodY pleiotropic repressor controls virulence in gram-positive pathogens. FEMS Immunol Med Microbiol. 2011;62(2):123-139. https://doi.org/10.1111/j.1574-695X.2011.00812.x
- Falaki B, Mahdavi S. Study of distribution of biofilm producing genes in Staphylococcus aureus isolated from local cheese samples in Maragheh city. Gene Cell Tissue. 2017;4(4):e66970.
- Notcovich S, DeNicolo G, Flint SH, Williamson NB, Gedye K, Grinberg A, et al. Biofilm-forming potential of Staphylococcus aureus isolated from bovine mastitis in New Zealand. Vet Sci. 2018;5(1):8. https://doi.org/10.3390/vetsci5010008
- Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades JR. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol. 2001;183(9):2888-2896. https://doi.org/10.1128/jb.183.9.2888-2896.2001
- Buzzola FR, Alvarez LP, Tuchscherr LP, Barbagelata MS, Lattar SM, Calvinho L, et al. Differential abilities of capsulated and noncapsulated Staphylococcus aureus isolates from diverse agr groups to invade mammary epithelial cells. Infect Immun. 2007;75(2):886-891. https://doi.org/10.1128/IAI.01215-06
- Murphy MP, Niedziela DA, Leonard FC, Keane OM. The in vitro host cell immune response to bovine-adapted Staphylococcus aureus varies according to bacterial lineage. Sci Rep. 2019;9(1):6134. https://doi.org/10.1038/s41598-019-42424-2
- Ahangari Z, Ghorbanpoor M, Shapouri MR, Gharibi D, Ghazvini K. Methicillin resistance and selective genetic determinants of Staphylococcus aureus isolates with bovine mastitis milk origin. Iran J Microbiol. 2017;9(3):152-159.
- Schroeder JW. Mastitis Control Program: Bovine Mastitis and Milking Management. AS-1129. Fargo: North Dakota State University; 1997.
- Firth CL, Laubichler C, Schleicher C, Fuchs K, Kasbohrer A, Egger-Danner C, et al. Relationship between the probability of veterinary-diagnosed bovine mastitis occurring and farm management risk factors on small dairy farms in Austria. J Dairy Sci. 2019;102(5):4452-4463. https://doi.org/10.3168/jds.2018-15657
- Richert RM, Cicconi KM, Gamroth MJ, Schukken YH, Stiglbauer KE, Ruegg PL. Management factors associated with veterinary usage by organic and conventional dairy farms. J Am Vet Med Assoc. 2013;242(12):1732-1743. https://doi.org/10.2460/javma.242.12.1732
- Chaiyabutr N. Control of mammary function during lactation in crossbred dairy cattle in the tropics. In: Milk Production - Advanced Genetic Traits, Cellular Mechanism, Animal Management and Health. London: IntechOpen; 2012, 127-154.
- Haltia L, Honkanen-Buzalski T, Spiridonova I, Olkonen A, Myllys V. A study of bovine mastitis, milking procedures and management practices on 25 Estonian dairy herds. Acta Vet Scand. 2006;48(1):22-28. https://doi.org/10.1186/1751-0147-48-22
- Hughes K, Watson CJ. The mammary microenvironment in mastitis in humans, dairy ruminants, rabbits and rodents: a one health focus. J Mammary Gland Biol Neoplasia. 2018;23(1-2):27-41. https://doi.org/10.1007/s10911-018-9395-1
- Hashem RA, Yassin AS, Zedan HH, Amin MA. Fluoroquinolone resistant mechanisms in methicillin-resistant Staphylococcus aureus clinical isolates in Cairo, Egypt. J Infect Dev Ctries. 2013;7(11):796-803. https://doi.org/10.3855/jidc.3105
- Frutis-Murillo M, Sandoval-Carrillo MA, Alva-Murillo N, Ochoa-Zarzosa A, Lopez-Meza JE. Immunomodulatory molecules regulate adhesin gene expression in Staphylococcus aureus: effect on bacterial internalization into bovine mammary epithelial cells. Microb Pathog. 2019;131(131):15-21. https://doi.org/10.1016/j.micpath.2019.03.030