DOI QR코드

DOI QR Code

Research of Thermal Properties for Liquid Crystalline Epoxy Composites with Tin Oxide Filler

산화주석을 함유한 열경화성 액정 에폭시의 열적 특성에 관한 연구

  • Hyun, Ha Nuel (Department of Organic Materials and fiber Engineering, Soong-sil University) ;
  • Cho, Seung Hyun (Department of Organic Materials and fiber Engineering, Soong-sil University)
  • Received : 2019.08.26
  • Accepted : 2020.02.28
  • Published : 2020.02.29

Abstract

A liquid crystalline thermosetting-epoxy-based composite was fabricated using diglycidyl ether of 4,4'-biphenol, tin(IV) oxide as a filler, and sulfanilamide as a curing agent. To investigate the thermal behavior, Thermogravimetric Analysis and Laser Flash Apparatus were performed using 3.0-7.0 wt% Tin(IV) oxide. The result showed that the activation energy and thermal conductivity were proportional to the amount of added filler.

Diglycidyl ether of 4,4'-biphenol을 기지로 사용하고, tin(IV) oxide를 filler로, sulfanilamide를 경화제로 사용하여 액정성 열경화성 에폭시 기반 복합재료를 제작하였다. TGA와 LFA를 이용하여 3.0-7.0 wt%의 tin(IV) oxide를 분산시켜 제작한 복합재료의 열적 거동을 조사한 결과, 열분해 활성화 에너지와 열전도성이 filler의 첨가량에 비례하는 것으로 나타났다.

Keywords

References

  1. Lu, M.G., Shim, M.J., and Kim, S.W., "Thermal Degradation of LC Epoxy Thermosets," Journal of Applied Polymer Science, Vol. 75, No. 12, 2000, pp. 1514-1521. https://doi.org/10.1002/(SICI)1097-4628(20000321)75:12<1514::AID-APP10>3.0.CO;2-E
  2. Li, Y., Badrinarayanan, P., and Kessler, M.R., "Liquid Crystalline Resin Based on Biphenyl Mesogen: Thermal Characterization," Polymer, Vol. 54, No. 12, 2013, pp. 3017-3025. https://doi.org/10.1016/j.polymer.2013.03.043
  3. Park, J.J., "Mechanical Properties of Epoxy Alumina Multicomposites," Journal of the Korean Institute of Electrical and Electronic Material Engineers, Vol. 29, No. 12, 2016, pp. 796-802. https://doi.org/10.4313/JKEM.2016.29.12.796
  4. Liu, J., Wang, C., Campbell, G.A., Earls, J.D., and Priester, R.D., "Effects of Liquid Crystalline Structure Formation on the Curing Kinetics of an Epoxy Resin," Journal of Polymer Science Part A: Polymer Chemisrty, Vol. 35, No. 6, 1997, pp. 1105-1124. https://doi.org/10.1002/(SICI)1099-0518(19970430)35:6<1105::AID-POLA14>3.0.CO;2-A
  5. Yeo, H., Islam, A.M., You, N.H., Ahn, S.H., Goh, M.J., Hahn, J.R., and Jang, S.G., "Characteristic Correlation between Liquid Crystalline Epoxy and Alumina Filler on Thermal Conducting Properties", Composites Science and Technology, Vol. 141, 2017, pp. 99-105. https://doi.org/10.1016/j.compscitech.2017.01.016
  6. Schultz, W.J., and Chartoff, R.P., "Photopolymerization of Nematic Liquid Crystal Monomers for Structure Applications: Molecular order and Orientation Dynamics," Polymer, Vol. 39, No. 2, 1998, pp. 319-325. https://doi.org/10.1016/S0032-3861(97)00261-9
  7. Kim, Y.S., Jung J., Yeo, H.U., You, N.H., Jang, S.G., Ahn, S.H., Lee, S.H., and Goh, M.J., "Development of Highly Thermal Conductive Liquid Crystalline Epoxy Resins for High Thermal Dissipation Composites," Composites Research, Vol. 30, No. 1, 2017, pp. 1-6. https://doi.org/10.7234/composres.2017.30.1.001
  8. Hirn, B., Carfagna, C., and Lanzetta, R., "Linear Precursors of Liquid Crystalline Thermosets," Journal of Materials Chemistry, Vol. 6, No. 9, 1996, pp. 1473-1478. https://doi.org/10.1039/jm9960601473
  9. Lee, J.Y., Shim, M.J., and Kim, S.W., "Synthesis of Liquid Crystalline Epoxy and Its Mechanical and Electrical Characteristics-Curing Reaction of LCE with Diamines by DSC Analysis," Journal of Applied Polymer Science, Vol. 83, No. 11, 2002, pp. 2419-2425. https://doi.org/10.1002/app.10204
  10. Su, W.-F.A., Chen, K.C., and Tseng, S.Y., "Effects of Chemical Structure Changes on Thermal, Mechanical, and Crystalline Properties of Rigid Rod Epoxy Resins," Journal of Applied Polymer Science, Vol. 78, No. 2, 2000, pp. 446-451. https://doi.org/10.1002/1097-4628(20001010)78:2<446::AID-APP250>3.0.CO;2-W
  11. Kang, S.S., Lee, S.H., Jang Y.S., and Park S.C., "The Electrical and Optical Characteristics of ATO Films Prepared by RF Magnetron Sputtering Method," Journal of Korean Ophthalmic Optics Society, Vol. 15, No. 4, 2010, pp. 299-305.
  12. Moon, H.J., Kim, K.H., Hwangbo, S.J., and Choi, S.H., "Thermal Decomposition Activation Energy of Liquid Crystalline Epoxy Composite with Zirconia Filler," Journal of the Korean Fiber Society, Vol. 52, No. 3, 2015, pp. 206-214.
  13. Choi, J.R., and Park, S.J., "A Study on Thermal Conductivity and Fracture Toughness of Alumina Nanofibers and Powdersfilled Epoxy Matrix Composites," Polymer Korea, Vol. 37, No. 1, 2013, pp. 47-51. https://doi.org/10.7317/pk.2013.37.1.47
  14. Moon, H.J., and Cho, S.H., "Thermal Decomposition Behavior of LCT Composites Using Boron Nitride Filler," Textile Science and Engineering, Vol. 53, No. 4, 2018, pp. 293-298. https://doi.org/10.12772/TSE.2016.53.293
  15. Venkatesh, M., Ravi, P., and Tewari, S.P., "Isoconversional Kinetic Analysis of Decomposition of Nitroimidazoles: Friedman method vs Flynn-Wall-Ozawa Method," The Journal of Physical Chemistry A, Vol. 117, No. 40, 2013, pp. 10162-10169. https://doi.org/10.1021/jp407526r
  16. Kissinger, H.E., "Reaction Kinetics in Differential Thermal Analysis," Analytical Chemistry, Vol. 29, No. 11, 1957, pp. 1702-1706. https://doi.org/10.1021/ac60131a045
  17. Flynn, J.H., and Wall, L.A., "General Treatment of the Thermogravimetry of Polymer," Journal of Research of the National Bureau of Standards-A. Physics and Chemistry, Vol. 70A, No. 6, 1996, pp. 487-532. https://doi.org/10.6028/jres.070A.043