DOI QR코드

DOI QR Code

Application of Nanoroll-Type Ag/g-C3N4 for Selective Conversion of Toxic Nitrobenzene to Industrially-Valuable Aminobenzene

  • Devaraji, Perumal (Department of Environmental Engineering, Kyungpook National University) ;
  • Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University)
  • 투고 : 2019.12.03
  • 심사 : 2020.01.21
  • 발행 : 2020.01.31

초록

Silver nanoparticles were loaded onto g-C3N4 (CN) with a nanoroll-type morphology (Ag/CN) synthesized using a co-polymerization method for highly selective conversion of toxic nitrobenzene to industrially-valuable aminobenzene. Scanning electron microscopy and high-resolution transmission electron microscopy (HRTEM) images of Ag/CN revealed the generation of the nanoroll-type morphology of CN. Additionally, HRTEM analysis provided direct evidence of the generation of a Schottky barrier between Ag and CN in the Ag/CN nanohybrid. Photoluminescence analysis and photocurrent measurements suggested that the introduction of Ag into CN could minimize charge recombination rates, enhancing the mobility of electrons and holes to the surface of the photocatalyst. Compared to pristine CN, Ag/CN displayed much higher ability in the photocatalytic reduction of nitrobenzene to aminobenzene, underscoring the importance of Ag deposition on CN. The enhanced photocatalytic performance and photocurrent generation were primarily ascribed to the Schottky junction formed at the Ag/CN interface, greater visible-light absorption efficiency, and improved charge separation associated with the nanoroll morphology of CN. Ag would act as an electron sink/trapping center, enhancing the charge separation, and also serve as a good co-catalyst. Overall, the synergistic effects of these features of Ag/CN improved the photocatalytic conversion of nitrobenzene to aminobenzene.

키워드

참고문헌

  1. An, J., Yang, Q., Luo, Q., Li, X., Yin, R., Liu, F., Wang, D., 2016, Preparation and characterization of silver/g-carbon nitride/chitosan nanocomposite with hotocatalytic activity, Integr. Ferroelectr., 180, 52-60.
  2. Bai, X., Wang, L., Zong, R., Zhu, Y., 2013, Photocatalytic activity enhanced via gC3N4 nanoplates to nanorods, J. Phys. Chem. C, 117, 9952-9961. https://doi.org/10.1021/jp402062d
  3. Bharad, P. A., Sivaranjani, K., Gopinath, C. S., 2015, A Rational approach towards enhancing solar water splitting: a case study of Au-RGO/N-RGO-$TiO_2$, Nanoscale, 7, 11206-11215. https://doi.org/10.1039/C5NR02613J
  4. Bu, Y., Chen, Z., Li, W., 2014, Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous $g-C_3N_4$ heterojunction material, Appl. Catal. B, 144, 622-630. https://doi.org/10.1016/j.apcatb.2013.07.066
  5. Chaiseeda, K., Nishimura, S., Ebitani, K., 2017, Gold nanoparticles supported on alumina as a catalyst for surface plasmon-enhanced selective reductions of nitrobenzene, ACS Omega, 2, 7066-7070. https://doi.org/10.1021/acsomega.7b01248
  6. Chen, Z., Liu, S., Yang, M. Q., Xu, Y. J., 2013, Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water, ACS Appl. Mater. Inter., 5, 4309-4319. https://doi.org/10.1021/am4010286
  7. Dai, X., Xie, M., Meng, S., Fu, X., Chen, X., 2014, Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aminobenzene using $CdS/g-C_3N_4$ photocatalyst under visible light irradiation, Appl. Catal. B, 158-159, 382-390. https://doi.org/10.1016/j.apcatb.2014.04.035
  8. Devaraji, P., Gopinath, C. S., 2018, Pt -$CdS/g-C_3N_4$- (Au/$TiO_2$): Electronically integrated nanocomposite for solar hydrogen generation, Int. J. Hydrogen Energ., 43, 601-613. https://doi.org/10.1016/j.ijhydene.2017.11.057
  9. Devaraji, P., Jo, W. K., 2018, Two‐dimensional mixed phase leaf‐$Ti_{1-x}Cu_xO_2$ sheets synthesized based on a natural leaf template for increased photocatalytic H2 evolution, Appl. Catal. A, 565, 1-12. https://doi.org/10.1016/j.apcata.2018.07.035
  10. Devaraji, P., Mapa, M., Hakkeem, H. A., Sudhakar, V., Krishnamoorthy, K., Gopinath, C. S., 2017, ZnO-ZnS heterojunction: A potential candidate for optoelectronics applications and mineralization of endocrine disruptors in direct sunlight, ACS Omega, 2, 6768-6781. https://doi.org/10.1021/acsomega.7b01172
  11. Devaraji, P., Sathu, N. K., Gopinath, C. S., 2014, Ambient oxidation of benzene to phenol by photocatalysis on Au/$Ti_{0.98}V_{0.02}O_2$: role of holes, ACS Catal., 4, 2844-2853. https://doi.org/10.1021/cs500724z
  12. European Chemicals Agency, Committee for Risk Assessment, Nitrobenzene ECHA/RAC/CLH-0-0000 002350-87-01/A1, February 3, 2012.
  13. Ge, L., Han, C., Liu, J., Li, Y., 2011, Enhanced visible light photocatalytic activity of novel polymeric $CdS/g-C_3N_4$ loaded with Ag nanoparticles, Appl. Catal. A, 409-410, 215-222. https://doi.org/10.1016/j.apcata.2011.10.006
  14. Gholap, S. G., Badiger, M. V., Gopinath, C. S., 2005, Molecular origins of wettability of hydrophobic poly (vinylidene fluoride) microporous membranes on poly (vinyl alcohol) adsorption: surface and interface analysis by XPS, J Phys. Chem. C, 109, 13941-13947. https://doi.org/10.1021/jp050806r
  15. Grirrane, A., Corma, A., Garcia, H., 2008, Gold catalyzed synthesis of aromatic azo compounds from aminobenzenes and nitroaromatics, Science, 322, 1661-1664. https://doi.org/10.1126/science.1166401
  16. Guo, S., Deng, Z., Li, M., Jiang, B., Tian, C., Pan, Q., Fu, H., 2016, Phosphorous-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution, Angew. Chem. Int. Edit., 55, 1830-1834. https://doi.org/10.1002/anie.201508505
  17. Guo, X., Zhang, G., Cui, H., Wei, N., Song, X., Li, J., Tian, J., 2017, Porous $TiB_2$-TiC/$TiO_2$ heterostructures: synthesis and enhanced photocatalytic properties from nanosheets to sweetened rolls, Appl. Catal. B, 217, 12-20. https://doi.org/10.1016/j.apcatb.2017.05.079
  18. Han, Q., Wang, B., Gao, J., Cheng, Z., Zhao, Y., Zhang, Z., Qu, L., 2016, Atomically thin mesoporous nanomesh of graphitic $C_3N_4$ for high-efficiency photocatalytic hydrogen evolution, ACS Nano, 10, 2745-2751. https://doi.org/10.1021/acsnano.5b07831
  19. Ho, W., Zhang, Z., Lin, W., Huang, S., Zhang, X., Wang, X., Huang, Y., 2015, Copolymerization with 2,4,6-triaminopyrimidine for the roll-up the layer structure, tunable electronic properties, and photocatalysis of $CdS/gC_3N_4$, ACS Appl. Mater. Inter., 7, 5497-5505. https://doi.org/10.1021/am509213x
  20. Jin, Z., Zhang, Q., Yuana, S., Ohno, T., 2015, Synthesis high specific surface area nanotube $g-C_3N_4$ with two-step condensation treatment of melamine to enhance photocatalysis properties, RSC Adv., 5, 4026-4029. https://doi.org/10.1039/C4RA13355B
  21. Ke, X., Zhang, X., Zhao, J., Sarina, S., Barry, J., Zhu, H., 2013, Selective reductions using visible light photocatalysts of supported gold nanoparticles, Green Chem., 15, 236-244. https://doi.org/10.1039/C2GC36542A
  22. Khan, M. E., Han, T. H., Khan, M. M., Karim, M. R., Cho, M. H., 2018, Environmentally sustainable fabrication of $Ag@g-C_3N_4$ nanostructures and their multi -functional efficacy as antibacterial agents and photocatalysts, ACS Appl. Nano Mater., 1, 2912-2922. https://doi.org/10.1021/acsanm.8b00548
  23. Kimura, K., Naya, S. I., Jin-nouchi, Y., Tada, H., 2012, $TiO_2$ crystal form-dependence of the Au/$TiO_2$ plasmon photocatalyst's activity, J. Phys. Chem. C, 116, 7111-7117. https://doi.org/10.1021/jp301681n
  24. Kumar, S., Surendar, T., Baruah, A., Shanker, V., 2013, Synthesis of a novel and stable $g-C_3N_4-Ag_3PO_4$ hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation, J. Mater. Chem. A, 1, 5333-5340. https://doi.org/10.1039/c3ta00186e
  25. Li, H., Gao, Y., Wu, X., Lee, P. H., Shih, K., 2017, Fabrication of heterostructured $g-C_3N_4/Ag-TiO_2$ hybrid photocatalyst with enhanced performance in photocatalytic conversion of $CO_2$ under simulated sunlight irradiation, Appl, Surf. Sci., 402, 198-207. https://doi.org/10.1016/j.apsusc.2017.01.041
  26. Patra, K. K., Bhuskute, B. D., Gopinath, C. S., 2017, Possibly scalable solar hydrogen generation with quasi-artificial leaf approach, Sci. Rep., 7, 1-9. https://doi.org/10.1038/s41598-016-0028-x
  27. Patra, K. K., Gopinath, C. S., 2017, Harnessing visible-light and limited near-IR photons through plasmon effect of gold nanorod with $AgTiO_2$, J. Phys. Chem. C, 122, 1206-1214. https://doi.org/10.1021/acs.jpcc.7b10289
  28. Roy, P., Periasamy, A. P., Liang, C. T., Chang, H. T., 2013, Synthesis of graphene-ZnO-Au nanocomposites for efficient photocatalytic reduction of nitrobenzene, Environ. Sci. Technol., 47, 6688-6695. https://doi.org/10.1021/es400422k
  29. Sathu, N. K., Devaraji, P., Gopinath, C. S., 2016, Green leaf to inorganic leaf: a case study of ZnO, J. Nanosci. Nanotechnol., 16, 9203-9208. https://doi.org/10.1166/jnn.2016.12912
  30. Shiraishi, Y., Kanazawa, S., Sugano, Y., Tsukamoto, D., Sakamoto, H., Ichikawa, S., Hirai, T., 2014, Highly selective production of hydrogen peroxide on graphitic carbon nitride ($gC_3N_4$) photocatalyst activated by visible light, ACS Catal., 4, 774-780. https://doi.org/10.1021/cs401208c
  31. Tada, H., Ishida, T., Takao, A., Ito, S., Mukhopadhyay, S., Akita, T., Tanaka, K., Kobayashi, H., 2005, Kinetic and DFT studies on the $Ag/TiO_2$‐photocatalyzed selective reduction of nitrobenzene to aminobenzene, Chemphyschem, 6, 1537-1543. https://doi.org/10.1002/cphc.200500031
  32. Tahir, M., Cao, C., Mahmood, N., Butt, F. K., Mahmood, A., Idrees, F., Hussain, S., Tanveer, M., Ali, Z., Aslam, I. 2014, Multifunctional $gC_3N_4$ nanofibers: a template -free fabrication and enhanced optical, electrochemical, and photocatalyst properties, ACS Appl. Mater. Inter., 6, 1258-1265. https://doi.org/10.1021/am405076b
  33. Tanaka, A., Nishino, Y., Sakaguchi, S., Yoshikawa, T., Imamura, K., Hashimoto, K., Kominami, H., 2013, Functionalization of a plasmonic Au/$TiO_2$ photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aminobenzene in 2-propanol suspensions under irradiation of visible light, Chem. Commun., 49, 2551-2553. https://doi.org/10.1039/c3cc39096a
  34. Toyao, T., Saito, M., Horiuchi, Y., Mochizuki, K., Iwata, M., Higashimura, H., Matsuoka, M., 2013, Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visible-light-responsive metal-organic framework photocatalyst, Catal. Sci. Technol., 3, 2092-2097. https://doi.org/10.1039/c3cy00211j
  35. Verma, S., Baig, R. B. N., Nadagouda, M. N., Varma, R. S., 2017, Hydroxylation of benzene via-C-H activation using bimetallic $4CuAg@g-C_3N_4$, ACS Sustainable Chem. Eng., 5 3637-3640. https://doi.org/10.1021/acssuschemeng.7b00772
  36. Xiao, Q., Sarina, S., Waclawik, E. R., Jia, J., Chang, J., Riches, J. D., Wu, H., Zheng, Z., Zhu, H., 2016, Alloying gold with copper makes for a highly selective visible-light photocatalyst for the reduction of nitroaromatics to aminobenzenes, ACS Catal., 6, 1744-1753. https://doi.org/10.1021/acscatal.5b02643
  37. Yang, Z., Xu, X., Liang, X., Lei, C., Cui, Y., Wu, W., Yang, Y., Zhang, Z., Lei, Z., 2017, Construction of heterostructured MIL-125/Ag/$g-C_3N_4$ nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions, Appl. Catal. B, 205, 42-54. https://doi.org/10.1016/j.apcatb.2016.12.012
  38. Zhang, Y., Liu, J., Wu, G., Chen, W., 2012, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, Nanoscale, 4, 5300-5303. https://doi.org/10.1039/c2nr30948c
  39. Zhu, H., Ke, X., Yang, X., Sarina, S., Liu, H., 2010, Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light, Angew. Chem. Int. Ed., 49, 9657-9661. https://doi.org/10.1002/anie.201003908