DOI QR코드

DOI QR Code

Augmented Reality Framework for Efficient Access to Schedule Information on Construction Sites

증강현실 기술을 통한 건설 현장에서의 공정 정보 활용도 제고 방안

  • 이용주 (명지대학교 토목환경공학과) ;
  • 김진영 (명지대학교 토목환경공학과) ;
  • ;
  • 박만우 (명지대학교 토목환경공학과)
  • Received : 2020.11.19
  • Accepted : 2020.11.20
  • Published : 2020.12.31

Abstract

Allowing on-site workers to access information of the construction process can enable task control, data integration, material and resource control. However, in the current practice of the construction industry, the existing methods and scope is quite limited, leading to inefficient management during the construction process. In this research, by adopting cutting edge technologies such as Augmented Reality(AR), digital twins, deep learning and computer vision with wearable AR devices, the authors proposed an AR visualization framework made of virtual components to help on-site workers to obtain information of the construction process with ease of use. Also, this paper investigates wearable AR devices and object detection algorithms, which are critical factors in the proposed framework, to test their suitability.

Keywords

References

  1. ART+COM STUDIOS (2013). Augmented reality, https://artcom.de/en/?resea rch_focus=augmented-reality (Dec. 28. 2020).
  2. Azuma, R. T. (1997). A Survey of Augmented Reality. PRESENCE: Virtual and Augmented Reality, 6(4), pp. 355-385. https://doi.org/10.1162/pres.1997.6.4.355
  3. Azuma, R., Lee, J. W., Jiang, B., Park, J., You, S., Neumann, U. (1999). Tracking in unprepared environments for augmented reality systems. Computers & Graphics, 23, pp. 787-793. https://doi.org/10.1016/S0097-8493(99)00104-1
  4. Barricelli, B. R., Casiraghi, E., Fogli, D. (2019). A Survey on Digital Twin: Definitions, Characteristics, Applications and Design Implications. IEEE Access, 7, 167653-167671, doi: 10.1109/ACCESS.2019.2953499
  5. Chatzopoulos, D., Bermejo, C., Huang, Z., Hui, P. (2017). Mobile Augmented Reality Survey: From Where We Are to Where We go. IEEE Access, 5, pp. 6917-6950. https://doi.org/10.1109/ACCESS.2017.2698164
  6. Dunston, P. S., Wang, X. (2005). Mixed Reality-Based Visualization Interfaces for Architecture, Engineering, and Construction Industry. Journal of Construction Engineering & Management, 131(12), pp. 1301-1309. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:12(1301)
  7. Hanna, M. G., Ahmed, I., Nine, J., Shyam, P., Pantanowitz, L. (2018). Augmented Reality Technology Using Microsoft HoloLens in Anatomic Pathology. Archives of Pathology & Laboratory Medicine, 142, pp. 638-644. https://doi.org/10.5858/arpa.2017-0189-OA
  8. Hochhalter, J. D., Leser, W. P., Newman, J. A., Glaessgen, E. H., Gupta, V. K., Yamakov, V., Cornell, S. R., Willard, S. A., Heber, G. (2014). Coupling Damage-Sensing Particles to the Digitial Twin Concept. NASA Center for AeroSpace Information
  9. Khajavi, S. H., Motlagh, N. H., Jaribion, A., Werner, L. C., Holmstrom, J. (2019). Digital Twin: Vision, Benefits, Boundaries, and Creation for Buildings. IEEE Access 7, 147406-147419. https://doi.org/10.1109/ACCESS.2019.2946515
  10. Li, X., Yi, W., Chi, H. L., Wang, X., Chan, A. P. C. (2018). A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Automation in Construction, 86, pp.150-162. https://doi.org/10.1016/j.autcon.2017.11.003
  11. Lim, K. Y. H., Pai, Z., Chen, C. H. (2020). A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives. Journal of Intelligent Manufacturing, 31, pp. 1313-1337. https://doi.org/10.1007/s10845-019-01512-w
  12. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikinen, M. (2020). Deep learning for generic object detection: A survey. International journal of computer vision, 128(2), pp. 261-318. https://doi.org/10.1007/s11263-019-01247-4
  13. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., Berg, A. C. (2016). Ssd: Single shot multibox detector. In European conference on computer vision, pp. 21-37.
  14. Redmon, J., Farhadi, A. (2018). Yolov3: An incremental improvement, https://arxiv.org/abs/1804.02767 (Sep. 03. 2020).
  15. Ren, S., He, K., Girshick, R., Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems, pp. 91-99.
  16. Robert, G. W., Evans, A., Dodson, A. H., Denby, B., Cooper, S., Hollands, R. (2002). The Use of Augmented Reality, GPS and INS for Subsurface Data Visualisation. FIG XXII International Congress, Washington, D.C. USA, April 19-26 2002
  17. Souza, E. (2019). 9 Augmented reality technologies for architecture and construction, https://www.archdaily.com/914501/9-augmented-reality-technologies-forarchitecture-and-construction (Dec. 28. 2020).
  18. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. International Journal of Advanced Manufacturing Technology, 94, pp. 3563-3576. https://doi.org/10.1007/s00170-017-0233-1
  19. Trimble (2019). Trimble connect for HoloLens, https://mixedreality.trimble.com (Dec. 28. 2020).
  20. Tuegel, E. J., Ingraffea, A. R., Eason, T. G., Spottswood, S. M. (2011). Reengineering Aircraft Structural Life Prediction Using a Digital Twin. International Journal of Aerospace Engineering, 2011, doi:10.1155/2011/154798