DOI QR코드

DOI QR Code

Identification of a novel triterpene saponin from Panax ginseng seeds, pseudoginsenoside RT8, and its antiinflammatory activity

  • Rho, Taewoong (College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea) ;
  • Jeong, Hyun Woo (Amorepacific Corp. R&D Unit) ;
  • Hong, Yong Deog (Amorepacific Corp. R&D Unit) ;
  • Yoon, Keejung (Department of Integrative Biotechnology, Sungkyunkwan University) ;
  • Cho, Jae Youl (Department of Integrative Biotechnology, Sungkyunkwan University) ;
  • Yoon, Kee Dong (College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea)
  • Received : 2018.03.30
  • Accepted : 2018.11.03
  • Published : 2020.01.15

Abstract

Background: Panax ginseng Meyer (Araliaceae) is a highly valued medicinal plant in Asian regions, especially in Korea, China, and Japan. Chemical and biological studies on P. ginseng have focused primarily on its roots, whereas the seeds remain poorly understood. This study explores the phytochemical and biological properties of compounds from P. ginseng seeds. Methods: P. ginseng seeds were extracted with methanol, and 16 compounds were isolated using various chromatographic methods. The chemical structures of the isolates were determined by spectroscopic data. Antiinflammatory activities were evaluated for triterpene and steroidal saponins using lipopolysaccharide-stimulated RAW264.7 macrophages and THP-1 monocyte leukemia cells. Results: Phytochemical investigation of P. ginseng seeds led to the isolation of a novel triterpene saponin, pseudoginsenoside RT8, along with 15 known compounds. Pseudoginsenoside RT8 exhibited more potent antiinflammatory activity than the other saponins, attenuating lipopolysaccharide-mediated induction of proinflammatory genes such as interleukin-1β, interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2, and matrix metalloproteinase-9, and suppressed reactive oxygen species and nitric oxide generation in a dose-dependent manner. Conclusion: These findings indicate that pseudoginsenoside RT8 has a pharmaceutical potential as an antiinflammatory agent and that P. ginseng seeds are a good natural source for discovering novel bioactive molecules.

Keywords

References

  1. The Compilation Committee of Pharmacognosy Textbook. Pharmacognosy. 2nd ed. Geyong-gi: Dong Meyoung Press; 2015. p. 196-203.
  2. Shergis JL, Di YM, Zhang AL, Vlahos R, Helliwell R, Ye JM, Xue CC. Therapeutic potential of Panax ginseng and ginsenosides in the treatment of chronic obstructive pulmonary disease. Complement Ther Med 2014;22:944-53. https://doi.org/10.1016/j.ctim.2014.08.006
  3. Van Kampen JM, Baranowski DB, Shaw CA, Kay DG. Panax ginseng is neuroprotective in a novel progressive model of Parkinson's disease. Exp Gerontol 2014;50:95-105. https://doi.org/10.1016/j.exger.2013.11.012
  4. Hong SH, Suk KT, Choi SH, Lee JW, Sung HT, Kim CH, Kim EJ, Kim MJ, Han SH, Kim MY, et al. Anti-oxidant and natural killer cell activity of Korean red ginseng (Panax ginseng) and urushiol (Rhus vernicifera Stokes) on nonalcoholic fatty liver disease of rat. Food Chem Toxicol 2013;55:586-91. https://doi.org/10.1016/j.fct.2013.01.022
  5. Xue CC, Shergis JL, Zhang AL, Worsnop C, Fong H, Story D, Da Costa C, Thien FC. Panax ginseng C.A Meyer root extract for moderate chronic obstructive pulmonary disease (COPD): study protocol for a randomised controlled trial. Trials 2011;12:164. https://doi.org/10.1186/1745-6215-12-164
  6. Lee ST, Chu K, Sim JY, Heo JH, Kim M. Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis Assoc Disord 2008;22:222-6. https://doi.org/10.1097/WAD.0b013e31816c92e6
  7. Li J, Liu Y, Li W, Wang Z, Guo P, Li L, Li N. Metabolic profiling of the effects of ginsenoside Re in an Alzheimer's disease mouse model. Behav Brain Res 2018;337:160-72. https://doi.org/10.1016/j.bbr.2017.09.027
  8. Gao Y, Yang MF, Su YP, Jiang HM, You XJ, Yang YJ, Zhang HL. Ginsenoside Re reduces insulin resistance through activation of PPAR-gamma pathway and inhibition of TNF-alpha production. J Ethnopharmacol 2013;147:509-16. https://doi.org/10.1016/j.jep.2013.03.057
  9. Han DH, Kim SH, Higashida K, Jung SR, Polonsky KS, Klein S, Holloszy JO. Ginsenoside Re rapidly reverses insulin resistance in muscles of high-fat diet fed rats. Metabolism 2012;61:1615-21. https://doi.org/10.1016/j.metabol.2012.04.008
  10. Yamamoto M, Uemura T, Nakama S, Uemiya M, Kumagai A. Serum HDLcholesterol-increasing and fatty liver-improving actions of Panax ginseng in high cholesterol diet-fed rats with clinical effect on hyperlipidemia in man. Am J Chin Med 1983;11:96-101. https://doi.org/10.1142/S0192415X83000161
  11. Yamamoto M, Kumagai A. Anti-atherogenic action of Panax ginseng in rats and in patients with hyperlipidemia. Planta Med 1982;45:149. https://doi.org/10.1055/s-2007-971317
  12. Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017;41:435-43. https://doi.org/10.1016/j.jgr.2016.08.004
  13. Attele AS, Wu JA, Yuan C-S. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
  14. Hasegawa H. Proof of the myskoterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci 2004;95:153-7. https://doi.org/10.1254/jphs.FMJ04001X4
  15. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005;115:1111-9. https://doi.org/10.1172/JCI25102
  16. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006;116:1793-801. https://doi.org/10.1172/JCI29069
  17. Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Tolllike receptor 4. J Biol Chem 2001;276:16683-9. https://doi.org/10.1074/jbc.M011695200
  18. Xie JT, Zhou YP, Dey L, Attele AS, Wu JA, Gu M, Polonsky KS, Yuan CS. Ginseng berry reduces blood glucose and body weight in db/db mice. Phytomedicine 2002;9:254-8. https://doi.org/10.1078/0944-7113-00106
  19. Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 2002;51:1851-8. https://doi.org/10.2337/diabetes.51.6.1851
  20. Seo E, Kim S, Lee SJ, Oh BC, Jun HS. Ginseng berry extract supplementation improves age-related decline of insulin signaling in mice. Nutrients 2015;7:3038-53. https://doi.org/10.3390/nu7043038
  21. Lee DY, Cho JG, Lee MK, Lee JW, Park HJ, Lee YH, Yang DC, Baek NI. Identification of NMR data for ginsenoside Rg1. J Ginseng Res 2008;32:291-9. https://doi.org/10.5142/JGR.2008.32.4.291
  22. Cho JG, In SJ, Jung YJ, Cha BJ, Lee DY, Kim YB, Yeom M, Baek NI. Re-evaluation of physicochemical and NMR data of triol ginsenosides Re, Rf, Rg2, and 20-gluco-Rf from Panax ginseng roots. J Ginseng Res 2014;38:116-22. https://doi.org/10.1016/j.jgr.2013.10.002
  23. Cho JG, Lee MK, Lee JW, Park HJ, Lee DY, Lee YH, Yang DC, Baek NI. Physicochemical characterization and NMR assignments of ginsenosides Rb1, Rb2, Rc, and Rd isolated from Panax ginseng. J Ginseng Res 2010;34:113-21. https://doi.org/10.5142/jgr.2010.34.2.113
  24. De Rosa S, De Giulio A, Tommonaro G. Triterpene and sterol glucoside from cell cultures of Lycopersicon esculentum. Phytochemistry 1997;44:861-4. https://doi.org/10.1016/S0031-9422(96)00657-7
  25. Grishkovets VI, Tolkacheva NV, Shashkov AS, Ya. Chirva V. Triterpene glycosides of Hedera taurica VII. Structures of taurosides A and D from the leaves of Crimean ivy. Chem Nat Compd 1991;27:603-6. https://doi.org/10.1007/BF00630363
  26. Sugimoto S, Nakamura S, Matsuda H, Kitagawa N, Yoshikawa M. Chemical constituents from seeds of Panax ginseng: structure of new dammarane-type triterpene ketone, panaxadione, and HPLC comparisons of seeds and flesh. Chem Pharm Bull 2009;57:283-7. https://doi.org/10.1248/cpb.57.283
  27. Orihara Y, Furuya T, Hashimoto N, Deguchi Y, Tokoro K, Kanisawa T. Biotransformation of isoeugenol and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry 1992;31:827-31. https://doi.org/10.1016/0031-9422(92)80168-E
  28. Chang YC, Chang FR, Khalil AT, Hsieh PW, Wu YC. Cytotoxic benzophenanthridine and benzylisoquinoline alkaloids from Argemone mexicana. Z Naturforsch C 2003;58:521-6.
  29. Park SY, Kim JS, Lee SY, Bae KH, Kang SS. Chemical constituents of Lathyrus davidii. Nat Prod Sci 2008;14:281-8.
  30. Fang Z, Jeong SY, Choi JS, Min BS, Min BK, Woo MH. Cholinesterase inhibitory constituents from Capsosiphon fulvescens. Nat Prod Sci 2012;18:233-8.
  31. Rho T, Yoon KD. Chemical constituents of Nelumbo nucifera seeds. Nat Prod Sci 2017;23:253-7. https://doi.org/10.20307/nps.2017.23.4.253
  32. Liu JP, Tan X, Liu HY, Zhang QH, Lu D, Li PY, Zhao CF. Two novel dammaranetype compounds from the leaves and stems of Panax quinquefolium L. J Asian Nat Prod Res 2012;15:974-8. https://doi.org/10.1080/10286020.2013.794416
  33. Fujita S, Kasai R, Ohtani K, Yamasaki K, Chiu MH, Nie RL, Tanaka O. Dammarane glycoside from aerial parts of Neoalsomitra integrifolia. Phytochemistry 1995;38:465-72. https://doi.org/10.1016/0031-9422(94)00608-V
  34. Fusita S, Kasai R, Ohtani K, Yamasaki K, Chiu MH, Nie RL, Tanaka O. Dammarane glycoside from aerial parts of Neoalsomitra integrifolia. Phytochemistry 1995;39:591-602. https://doi.org/10.1016/0031-9422(95)00020-8
  35. Wang M, Chen Y, Xiong Z, Yu S, Zhou B, Ling Y, Zheng Z, Shi G, Wu Y, Qian X. Ginsenoside Rb1 inhibits free fatty acids induced oxidative stress and inflammation in 3T3L1 adipocytes. Mol Med Rep 2017;16:9165-72. https://doi.org/10.3892/mmr.2017.7710
  36. Kim SOh MH, Kim BS, Kim WI, Cho HS, Park BY, Park C, Shin GW, Kwon J. Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells. J Ginseng Res 2015;39:365-70. https://doi.org/10.1016/j.jgr.2015.03.008
  37. Lee IA, Hyam SR, Jang SE, Han MJ, Kim DH. Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem 2012;60:9595-602. https://doi.org/10.1021/jf301372g
  38. Kim TW, Joh EH, Kim B, Kim DH. Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int Immunopharmacol 2012;12:110-6. https://doi.org/10.1016/j.intimp.2011.10.023
  39. Sheller J, Chalaris A, Schmit-Arras D, Rose-John S. The pro- and antiinflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 2011;1813:878-88. https://doi.org/10.1016/j.bbamcr.2011.01.034
  40. Ren K, Torres R. Role of interleukin-$1{\beta}$ during pain and inflammation. Brain Res Rev 2009;60:57-64. https://doi.org/10.1016/j.brainresrev.2008.12.020
  41. Garcia-Ortiz A, Serrador JM. Nitric oxide signaling in T cell-mediated immunity. Trends Mol Med 2018;24:412-27. https://doi.org/10.1016/j.molmed.2018.02.002
  42. Botta M, Distrutti E, Mencarelli A, Parlato MC, Raffi F, Cipriani S, Fiorucci S. Anti-inflammatory activity of a new class of nitric oxide synthase inhibitors that release nitric oxide. ChemMedChem 2008;3:1580-8. https://doi.org/10.1002/cmdc.200800201
  43. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE. Cyclooxygenase in biology and disease. FASEB J 1998;12:1063-73. https://doi.org/10.1096/fasebj.12.12.1063
  44. Abdalla SI, Sanderson IR, Fitzgerald RC. Effect of inflammation on cyclooxygenase (COX)-2 expression in benign and malignant oesophageal cells. Carcinogenesis 2005;26:1627-33. https://doi.org/10.1093/carcin/bgi114
  45. Moore BA, Manthey CL, Johnson DL, Bauer AJ. Matrix metalloproteinase-9 inhibition reduces inflammation and improves motility in murine models of postoperative ileus. Gastroenterology 2011;141:1283-92. https://doi.org/10.1053/j.gastro.2011.06.035
  46. Saja K, Babu MS, Karunagaran D, Sudhakaran PR. Anti-inflammatory effect of curcumin involves downregulation of MMP-9 in blood mononuclear cells. Int Immunopharmacol 2007;7:1659-67. https://doi.org/10.1016/j.intimp.2007.08.018

Cited by

  1. Analgesic and Anti-Inflammatory Activities of Quercetin-3-methoxy-4′-glucosyl-7-glucoside Isolated from Indian Medicinal Plant Melothria heterophylla vol.6, pp.2, 2020, https://doi.org/10.3390/medicines6020059
  2. Matricaria chamomilla (Chamomile) Ameliorates Muscle Atrophy in Mice by Targeting Protein Catalytic Pathways, Myogenesis, and Mitochondrial Dysfunction vol.49, pp.6, 2020, https://doi.org/10.1142/s0192415x21500701
  3. Dobera glabra (Forssk.) Poir. (Salvadoraceae); phenolic constituents of the aqueous leaves extract and evaluation of its anti-inflammatory, analgesic activities vol.7, pp.2, 2021, https://doi.org/10.1016/j.heliyon.2021.e06205
  4. Olea europaea Suppresses Inflammation by Targeting TAK1-Mediated MAP Kinase Activation vol.26, pp.6, 2021, https://doi.org/10.3390/molecules26061540
  5. Dipterocarpus tuberculatus Roxb. Ethanol Extract Has Anti-Inflammatory and Hepatoprotective Effects In Vitro and In Vivo by Targeting the IRAK1/AP-1 Pathway vol.26, pp.9, 2020, https://doi.org/10.3390/molecules26092529
  6. Synthesis of silver nanoparticles using root extract of Duchesnea indica and assessment of its biological activities vol.14, pp.5, 2020, https://doi.org/10.1016/j.arabjc.2021.103110
  7. TAK1/AP-1-Targeted Anti-Inflammatory Effects of Barringtonia augusta Methanol Extract vol.26, pp.10, 2020, https://doi.org/10.3390/molecules26103053
  8. Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review vol.51, pp.4, 2020, https://doi.org/10.1080/10408347.2020.1736506
  9. Bioactive Phytochemicals from Mulberry: Potential Anti-Inflammatory Effects in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22158120
  10. Protective Effect of Potentilla glabra in UVB-Induced Photoaging Process vol.26, pp.17, 2021, https://doi.org/10.3390/molecules26175408
  11. Cissus subtetragona Planch. Ameliorates Inflammatory Responses in LPS-induced Macrophages, HCl/EtOH-induced Gastritis, and LPS-induced Lung Injury via Attenuation of Src and TAK1 vol.26, pp.19, 2021, https://doi.org/10.3390/molecules26196073
  12. Caragana rosea Turcz Methanol Extract Inhibits Lipopolysaccharide-Induced Inflammatory Responses by Suppressing the TLR4/NF-κB/IRF3 Signaling Pathways vol.26, pp.21, 2020, https://doi.org/10.3390/molecules26216660