References
- The Compilation Committee of Pharmacognosy Textbook. Pharmacognosy. 2nd ed. Geyong-gi: Dong Meyoung Press; 2015. p. 196-203.
- Shergis JL, Di YM, Zhang AL, Vlahos R, Helliwell R, Ye JM, Xue CC. Therapeutic potential of Panax ginseng and ginsenosides in the treatment of chronic obstructive pulmonary disease. Complement Ther Med 2014;22:944-53. https://doi.org/10.1016/j.ctim.2014.08.006
- Van Kampen JM, Baranowski DB, Shaw CA, Kay DG. Panax ginseng is neuroprotective in a novel progressive model of Parkinson's disease. Exp Gerontol 2014;50:95-105. https://doi.org/10.1016/j.exger.2013.11.012
- Hong SH, Suk KT, Choi SH, Lee JW, Sung HT, Kim CH, Kim EJ, Kim MJ, Han SH, Kim MY, et al. Anti-oxidant and natural killer cell activity of Korean red ginseng (Panax ginseng) and urushiol (Rhus vernicifera Stokes) on nonalcoholic fatty liver disease of rat. Food Chem Toxicol 2013;55:586-91. https://doi.org/10.1016/j.fct.2013.01.022
- Xue CC, Shergis JL, Zhang AL, Worsnop C, Fong H, Story D, Da Costa C, Thien FC. Panax ginseng C.A Meyer root extract for moderate chronic obstructive pulmonary disease (COPD): study protocol for a randomised controlled trial. Trials 2011;12:164. https://doi.org/10.1186/1745-6215-12-164
- Lee ST, Chu K, Sim JY, Heo JH, Kim M. Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis Assoc Disord 2008;22:222-6. https://doi.org/10.1097/WAD.0b013e31816c92e6
- Li J, Liu Y, Li W, Wang Z, Guo P, Li L, Li N. Metabolic profiling of the effects of ginsenoside Re in an Alzheimer's disease mouse model. Behav Brain Res 2018;337:160-72. https://doi.org/10.1016/j.bbr.2017.09.027
- Gao Y, Yang MF, Su YP, Jiang HM, You XJ, Yang YJ, Zhang HL. Ginsenoside Re reduces insulin resistance through activation of PPAR-gamma pathway and inhibition of TNF-alpha production. J Ethnopharmacol 2013;147:509-16. https://doi.org/10.1016/j.jep.2013.03.057
- Han DH, Kim SH, Higashida K, Jung SR, Polonsky KS, Klein S, Holloszy JO. Ginsenoside Re rapidly reverses insulin resistance in muscles of high-fat diet fed rats. Metabolism 2012;61:1615-21. https://doi.org/10.1016/j.metabol.2012.04.008
- Yamamoto M, Uemura T, Nakama S, Uemiya M, Kumagai A. Serum HDLcholesterol-increasing and fatty liver-improving actions of Panax ginseng in high cholesterol diet-fed rats with clinical effect on hyperlipidemia in man. Am J Chin Med 1983;11:96-101. https://doi.org/10.1142/S0192415X83000161
- Yamamoto M, Kumagai A. Anti-atherogenic action of Panax ginseng in rats and in patients with hyperlipidemia. Planta Med 1982;45:149. https://doi.org/10.1055/s-2007-971317
- Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017;41:435-43. https://doi.org/10.1016/j.jgr.2016.08.004
- Attele AS, Wu JA, Yuan C-S. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
- Hasegawa H. Proof of the myskoterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci 2004;95:153-7. https://doi.org/10.1254/jphs.FMJ04001X4
- Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005;115:1111-9. https://doi.org/10.1172/JCI25102
- Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006;116:1793-801. https://doi.org/10.1172/JCI29069
- Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Tolllike receptor 4. J Biol Chem 2001;276:16683-9. https://doi.org/10.1074/jbc.M011695200
- Xie JT, Zhou YP, Dey L, Attele AS, Wu JA, Gu M, Polonsky KS, Yuan CS. Ginseng berry reduces blood glucose and body weight in db/db mice. Phytomedicine 2002;9:254-8. https://doi.org/10.1078/0944-7113-00106
- Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 2002;51:1851-8. https://doi.org/10.2337/diabetes.51.6.1851
- Seo E, Kim S, Lee SJ, Oh BC, Jun HS. Ginseng berry extract supplementation improves age-related decline of insulin signaling in mice. Nutrients 2015;7:3038-53. https://doi.org/10.3390/nu7043038
- Lee DY, Cho JG, Lee MK, Lee JW, Park HJ, Lee YH, Yang DC, Baek NI. Identification of NMR data for ginsenoside Rg1. J Ginseng Res 2008;32:291-9. https://doi.org/10.5142/JGR.2008.32.4.291
- Cho JG, In SJ, Jung YJ, Cha BJ, Lee DY, Kim YB, Yeom M, Baek NI. Re-evaluation of physicochemical and NMR data of triol ginsenosides Re, Rf, Rg2, and 20-gluco-Rf from Panax ginseng roots. J Ginseng Res 2014;38:116-22. https://doi.org/10.1016/j.jgr.2013.10.002
- Cho JG, Lee MK, Lee JW, Park HJ, Lee DY, Lee YH, Yang DC, Baek NI. Physicochemical characterization and NMR assignments of ginsenosides Rb1, Rb2, Rc, and Rd isolated from Panax ginseng. J Ginseng Res 2010;34:113-21. https://doi.org/10.5142/jgr.2010.34.2.113
- De Rosa S, De Giulio A, Tommonaro G. Triterpene and sterol glucoside from cell cultures of Lycopersicon esculentum. Phytochemistry 1997;44:861-4. https://doi.org/10.1016/S0031-9422(96)00657-7
- Grishkovets VI, Tolkacheva NV, Shashkov AS, Ya. Chirva V. Triterpene glycosides of Hedera taurica VII. Structures of taurosides A and D from the leaves of Crimean ivy. Chem Nat Compd 1991;27:603-6. https://doi.org/10.1007/BF00630363
- Sugimoto S, Nakamura S, Matsuda H, Kitagawa N, Yoshikawa M. Chemical constituents from seeds of Panax ginseng: structure of new dammarane-type triterpene ketone, panaxadione, and HPLC comparisons of seeds and flesh. Chem Pharm Bull 2009;57:283-7. https://doi.org/10.1248/cpb.57.283
- Orihara Y, Furuya T, Hashimoto N, Deguchi Y, Tokoro K, Kanisawa T. Biotransformation of isoeugenol and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry 1992;31:827-31. https://doi.org/10.1016/0031-9422(92)80168-E
- Chang YC, Chang FR, Khalil AT, Hsieh PW, Wu YC. Cytotoxic benzophenanthridine and benzylisoquinoline alkaloids from Argemone mexicana. Z Naturforsch C 2003;58:521-6.
- Park SY, Kim JS, Lee SY, Bae KH, Kang SS. Chemical constituents of Lathyrus davidii. Nat Prod Sci 2008;14:281-8.
- Fang Z, Jeong SY, Choi JS, Min BS, Min BK, Woo MH. Cholinesterase inhibitory constituents from Capsosiphon fulvescens. Nat Prod Sci 2012;18:233-8.
- Rho T, Yoon KD. Chemical constituents of Nelumbo nucifera seeds. Nat Prod Sci 2017;23:253-7. https://doi.org/10.20307/nps.2017.23.4.253
- Liu JP, Tan X, Liu HY, Zhang QH, Lu D, Li PY, Zhao CF. Two novel dammaranetype compounds from the leaves and stems of Panax quinquefolium L. J Asian Nat Prod Res 2012;15:974-8. https://doi.org/10.1080/10286020.2013.794416
- Fujita S, Kasai R, Ohtani K, Yamasaki K, Chiu MH, Nie RL, Tanaka O. Dammarane glycoside from aerial parts of Neoalsomitra integrifolia. Phytochemistry 1995;38:465-72. https://doi.org/10.1016/0031-9422(94)00608-V
- Fusita S, Kasai R, Ohtani K, Yamasaki K, Chiu MH, Nie RL, Tanaka O. Dammarane glycoside from aerial parts of Neoalsomitra integrifolia. Phytochemistry 1995;39:591-602. https://doi.org/10.1016/0031-9422(95)00020-8
- Wang M, Chen Y, Xiong Z, Yu S, Zhou B, Ling Y, Zheng Z, Shi G, Wu Y, Qian X. Ginsenoside Rb1 inhibits free fatty acids induced oxidative stress and inflammation in 3T3L1 adipocytes. Mol Med Rep 2017;16:9165-72. https://doi.org/10.3892/mmr.2017.7710
- Kim SOh MH, Kim BS, Kim WI, Cho HS, Park BY, Park C, Shin GW, Kwon J. Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells. J Ginseng Res 2015;39:365-70. https://doi.org/10.1016/j.jgr.2015.03.008
- Lee IA, Hyam SR, Jang SE, Han MJ, Kim DH. Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem 2012;60:9595-602. https://doi.org/10.1021/jf301372g
- Kim TW, Joh EH, Kim B, Kim DH. Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int Immunopharmacol 2012;12:110-6. https://doi.org/10.1016/j.intimp.2011.10.023
- Sheller J, Chalaris A, Schmit-Arras D, Rose-John S. The pro- and antiinflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 2011;1813:878-88. https://doi.org/10.1016/j.bbamcr.2011.01.034
-
Ren K, Torres R. Role of interleukin-
$1{\beta}$ during pain and inflammation. Brain Res Rev 2009;60:57-64. https://doi.org/10.1016/j.brainresrev.2008.12.020 - Garcia-Ortiz A, Serrador JM. Nitric oxide signaling in T cell-mediated immunity. Trends Mol Med 2018;24:412-27. https://doi.org/10.1016/j.molmed.2018.02.002
- Botta M, Distrutti E, Mencarelli A, Parlato MC, Raffi F, Cipriani S, Fiorucci S. Anti-inflammatory activity of a new class of nitric oxide synthase inhibitors that release nitric oxide. ChemMedChem 2008;3:1580-8. https://doi.org/10.1002/cmdc.200800201
- Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE. Cyclooxygenase in biology and disease. FASEB J 1998;12:1063-73. https://doi.org/10.1096/fasebj.12.12.1063
- Abdalla SI, Sanderson IR, Fitzgerald RC. Effect of inflammation on cyclooxygenase (COX)-2 expression in benign and malignant oesophageal cells. Carcinogenesis 2005;26:1627-33. https://doi.org/10.1093/carcin/bgi114
- Moore BA, Manthey CL, Johnson DL, Bauer AJ. Matrix metalloproteinase-9 inhibition reduces inflammation and improves motility in murine models of postoperative ileus. Gastroenterology 2011;141:1283-92. https://doi.org/10.1053/j.gastro.2011.06.035
- Saja K, Babu MS, Karunagaran D, Sudhakaran PR. Anti-inflammatory effect of curcumin involves downregulation of MMP-9 in blood mononuclear cells. Int Immunopharmacol 2007;7:1659-67. https://doi.org/10.1016/j.intimp.2007.08.018
Cited by
- Analgesic and Anti-Inflammatory Activities of Quercetin-3-methoxy-4′-glucosyl-7-glucoside Isolated from Indian Medicinal Plant Melothria heterophylla vol.6, pp.2, 2020, https://doi.org/10.3390/medicines6020059
- Matricaria chamomilla (Chamomile) Ameliorates Muscle Atrophy in Mice by Targeting Protein Catalytic Pathways, Myogenesis, and Mitochondrial Dysfunction vol.49, pp.6, 2020, https://doi.org/10.1142/s0192415x21500701
- Dobera glabra (Forssk.) Poir. (Salvadoraceae); phenolic constituents of the aqueous leaves extract and evaluation of its anti-inflammatory, analgesic activities vol.7, pp.2, 2021, https://doi.org/10.1016/j.heliyon.2021.e06205
- Olea europaea Suppresses Inflammation by Targeting TAK1-Mediated MAP Kinase Activation vol.26, pp.6, 2021, https://doi.org/10.3390/molecules26061540
- Dipterocarpus tuberculatus Roxb. Ethanol Extract Has Anti-Inflammatory and Hepatoprotective Effects In Vitro and In Vivo by Targeting the IRAK1/AP-1 Pathway vol.26, pp.9, 2020, https://doi.org/10.3390/molecules26092529
- Synthesis of silver nanoparticles using root extract of Duchesnea indica and assessment of its biological activities vol.14, pp.5, 2020, https://doi.org/10.1016/j.arabjc.2021.103110
- TAK1/AP-1-Targeted Anti-Inflammatory Effects of Barringtonia augusta Methanol Extract vol.26, pp.10, 2020, https://doi.org/10.3390/molecules26103053
- Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review vol.51, pp.4, 2020, https://doi.org/10.1080/10408347.2020.1736506
- Bioactive Phytochemicals from Mulberry: Potential Anti-Inflammatory Effects in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22158120
- Protective Effect of Potentilla glabra in UVB-Induced Photoaging Process vol.26, pp.17, 2021, https://doi.org/10.3390/molecules26175408
- Cissus subtetragona Planch. Ameliorates Inflammatory Responses in LPS-induced Macrophages, HCl/EtOH-induced Gastritis, and LPS-induced Lung Injury via Attenuation of Src and TAK1 vol.26, pp.19, 2021, https://doi.org/10.3390/molecules26196073
- Caragana rosea Turcz Methanol Extract Inhibits Lipopolysaccharide-Induced Inflammatory Responses by Suppressing the TLR4/NF-κB/IRF3 Signaling Pathways vol.26, pp.21, 2020, https://doi.org/10.3390/molecules26216660