DOI QR코드

DOI QR Code

나노 섬유를 혼합한 시멘트 페이스트의 미세구조와 강도에 대한 연구

A Study about the Strength and Microstructure of Hardened Cement Pastes Including Nanofibers

  • 투고 : 2019.11.19
  • 심사 : 2019.12.12
  • 발행 : 2020.04.01

초록

본 연구에서는 시멘트 페이스트에 혼합된 나노 섬유가 경화된 시멘트페이스트의 압축강도와 인장강도에 미치는 영향을 연구하였다. 2종류의 나노 섬유를 사용하였다. 나일론 66 나노 섬유와 카본 나노 튜브로 보강된 나일론 66 나노 섬유를 전기방사로 제작하여 시멘트 파우더에 각각 혼합하였다. 물-시멘트비 0.5의 시멘트 페이스트 시편을 제작하고 28일간 양생하였다. 실험 결과, 나노섬유의 혼합이 시멘트 페이스트 시편의 압축강도와 인장강도를 증가시킴을 확인하였다. 나노 섬유의 보강 매카니즘을 확인하기 위해 주사전자현미경(SEM) 분석, 전계방사 투과전자 현미경(FE-TEM) 분석 및 열 중량 분석(TGA)을 수행하여 나노섬유를 포함한 시멘트 페이스트의 미세 구조를 분석하였다.

In this study, the effect of nanofibers in cement pastes on the compressive and tensile strength of hardened cement pastes was studied. Two types of nanofibers, nylon 66 nanofibers and carbon nanotube-nylon 66 hybrid nanofibers, were manufactured by electrospinning methodology and mixed in cement powder respectively. The specimens for experiments were prepared by water to cement ratio of 0.5 and cured in water for 28 days. The effect of nanofibers on the increase of the compressive and tensile strength were confirmed by the experimental results. The well-linking effect of nanofibers in the microstructure of the hardened cement pastes has been found by scanning electron microscope (SEM) analysis and well-explained for the increase in mechanical strength. Besides, field emission transmission electron microscope (FE-TEM) analysis and thermal gravimetric analysis (TGA) have also been conducted to analyze the properties of nanofibers as well as the microstructure of the hardened modified cement pastes.

키워드

참고문헌

  1. An, T., Pant, B., Kim, S. Y., Park, M., Park, S. J. and Kim, H. Y. (2017). "Mechanical and optical properties of electrospun nylon-6,6 nanofiber reinforced cyclic butylene terephthalate composites." Journal of Industrial and Engineering Chemistry, Vol. 55, pp. 35-39. https://doi.org/10.1016/j.jiec.2017.06.044
  2. Arinstein, A. (2018). Electrospun Polymer Nanofibers, chapter 1. USA, Pan Stanford Publishing Pte. Ltd., pp. 1-4.
  3. ASTM C109/C109M-16a (2016), Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, PA, 2016, www.astm.org.
  4. ASTM C307-03 (2012). Standard test method for tensile strength of chemical-resistant mortar, grouts, and monolithic surfacings, ASTM International, West Conshohocken, PA, 2012, www.astm.org.
  5. Baji, A., Mai, Y. W., Wong, S. C., Abtahi, M. and Du, X. (2010). "Mechanical behavior of self-assembled carbon nanotube reinforced nylon 6,6 fibers." Composites Science and Technology, Vol. 70, pp. 1401-1409. https://doi.org/10.1016/j.compscitech.2010.04.020
  6. Brown, L. and Sanchez, F. (2018). "Influence of carbon nanofiber clustering in cement pastes exposed to sulfate attack." Construction and Building Materials, Vol. 166, pp. 181-187. https://doi.org/10.1016/j.conbuildmat.2018.01.108
  7. Flores, Y. C., Cordeiro, G. C., Filho, R. D. T and Tavares, L. M. (2017). "Performance of Portland cement pastes containing nano-silica and different types of silica." Construction and Building Materials, Vol. 146, pp. 524-530. https://doi.org/10.1016/j.conbuildmat.2017.04.069
  8. Foley, E. M., Kim, J. J. and Taha, M. M. R. (2012). "Synthesis and nano-mechanical characterization of calcium-silicate-hydrate (C-S-H) made with 1.5 CaO/SiO2 mixture." Cement and Concrete Research, Vol. 42, pp. 1225-1232. https://doi.org/10.1016/j.cemconres.2012.05.014
  9. Han, T., Nag, A., Mulkhopadhyay, S. C. and Xu, Y. (2019). "Carbon nanotubes and its gas-sensing applications: A review." Sensors and Actuators A: Physical, Vol. 291, pp. 107-143. https://doi.org/10.1016/j.sna.2019.03.053
  10. Hsieh, Y. C., Chou, Y. C., Lin, C. P., Hsieh, T. F. and Shu, C. M. (2010). "Thermal analysis of multi-walled carbon nanotubes by kissinger's corrected kinetic equation." Aerosol and Air Quality Research, Vol. 10, No. 3, pp. 212-218. https://doi.org/10.4209/aaqr.2009.08.0053
  11. Jafari, S. (2018). "Engineering applications of carbon nanotubes." Carbon Nanotube-Reinforced Polymers, pp. 25-40.
  12. Katsogiannis, K. A. G., Vladisavljevic, G. T. and Georgiadou, S. (2015). "Porous electrospun polycaprolactone (PCL) fibres by phase separation." European Polymer Journal, Vol. 69, pp. 284-295. https://doi.org/10.1016/j.eurpolymj.2015.01.028
  13. Kim, J. J., Foley, E. M. and Taha, M. M. R. (2013). "Nano-mechanical characterization of synthetic calcium-silicate-hydrate (C-S-H) with varying CaO/SiO2 mixture ratios." Cement & Concrete Composites, Vol. 36, pp. 65-70. https://doi.org/10.1016/j.cemconcomp.2012.10.001
  14. Kochov, K., Gauvin, F., Schollbach, K. and Brouwers, H. J. H. (2020). "Using alternative waste coir fibres as a reinforcement in cement-fibre composites." Construction and Building Materials, Vol. 231.
  15. Kroschwitz, J. I. (1998). Encyclopedia of polymer science and engineering, John Wiley & Sons, New Jersey, USA.
  16. Liu, W., Zhang, S., Chen, X., Yu, L., Zhu, X. and Feng, Q. (2010). "Thermal behavior and fire performance of nylon-6,6 fabric modified with acrylamide by photografting." Polymer Degradation and Stability, Vol. 95, No. 9, pp. 1842-1848. https://doi.org/10.1016/j.polymdegradstab.2010.04.023
  17. Mehta, P. K. and Monteiro, P. J. M. (2006). Concrete: microstructure, properties, and materials - Chapter 6. United States of America, The McGraw-Hill Companies, Inc: 203-252, New York, NY.
  18. Mohsen, M. O., Taha, R., Taqa, A. A. and Shaat, A. (2017). "Optimum carbon nanotubes' content for improving flexural and compressive strength of cement paste." Construction and Building Materials, Vol. 150, pp. 395-403. https://doi.org/10.1016/j.conbuildmat.2017.06.020
  19. Naidu, P. K., Pulagara, N. V. and Dondapati, R. S. (2014). "Carbon nanotubes in engineering applications: A review." Progress in Nanotechnology and Nanomaterials, Vol. 3, No. 4, pp. 79-82. https://doi.org/10.5963/PNN0304003
  20. Navarro-Pardo, F., Martinez-Barrera, G., Martinez-Hernandez, A. L., Castano, V. M., Rivera-Armenta, J. L., Medellín-Rodriguez, F. and Velasco-Santos, C. (2013). "Effects on the thermo-mechanical and crystallinity properties of nylon 6,6 electrospun fibres reinforced with one dimensional (1D) and two dimensional (2D) carbon." Materials, Vol. 6, No. 8, pp. 3494-3513. https://doi.org/10.3390/ma6083494
  21. Nguyen, T. N. M., Moon, J. and Kim, J. J. (2020). "Microstructure and mechanical properties of hardened cement paste including Nylon 66 nanofibers." Construction and Building Materials, Vol. 23.
  22. Rocha, V. V., Ludvig, P., Trindade, A. C. C. and Silva, F. dA. (2019). "The influence of carbon nanotubes on the fracture energy, flexural and tensile behavior of cement based composites." Construction and Building Materials, Vol. 209, pp. 1-8. https://doi.org/10.1016/j.conbuildmat.2019.03.003
  23. Saleh, H. M., El-Sheikh, S. M., Elshereafy, E. E. and Essa, A. K. (2019). "Mechanical and physical characterization of cement reinforced by iron slag and titanate nanofibers to produce advanced containment for radioactive waste." Construction and Building Materials, Vol. 200, pp. 135-145. https://doi.org/10.1016/j.conbuildmat.2018.12.100
  24. Suzuki, A., Chen, Y. and Kunugi, T. (1998). "Application of a continuous zone-drawing method to nylon 66 fibres." Polymer, Vol. 39, No. 22, pp. 5335-5341. https://doi.org/10.1016/S0032-3861(97)10233-6
  25. Taylor, H. F. W. (1997). Cement Chemistry, Chapter 5. USA, Thomas Telford.
  26. Thenmozhi, S., Dharmaraj, N., Kadirvelu, K. and Kim, H. Y. (2017). "Electrospun nanofibers: New generation materials for advanced applications." Materials Science and Engineering B, Vol. 217, pp. 36-48. https://doi.org/10.1016/j.mseb.2017.01.001
  27. Treacy, M. M. J, Ebbesen, T. W. and Gibson, J. M. (1996). "Exceptionally high Young's modulus observed for individual carbon nanotubes." Nature, Vol. 381, pp. 678-680. https://doi.org/10.1038/381678a0
  28. Walters, D. A., Ericson, L. M., Casavant, M. J., Liu, J., Colbert, D. T., Smith, K. A. and Smalley, R. E. (1999). "Elastic strain of freely suspended single-wall carbon nanotube ropes." Applied Physics Letters, Vol. 74, No. 25, pp. 3803-3805. https://doi.org/10.1063/1.124185
  29. Wang, M., Wang, R., Yao, H., Farhan, S., Zheng, S., Wang, Z., Du, C. and Jiang, H. (2016). "Research on the mechanism of polymer latex modified cement." Construction and Building Materials, Vol. 111, pp. 710-718. https://doi.org/10.1016/j.conbuildmat.2016.02.117
  30. Xue, J., Xie, J., Liu, W. and Xia, Y. (2017). "Electrospun nanofibers: New concepts, materials, and applications." Accounts of Chemical Research, Vol. 50, No. 8, pp. 1976-1987. https://doi.org/10.1021/acs.accounts.7b00218
  31. Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F. and Ruoff, R. S. (2000). "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load." Science, Vol. 287, No. 5453, pp. 637-640. https://doi.org/10.1126/science.287.5453.637
  32. Zussman, E., Burman, M., Yarin, A. L., Khalfin, R. and Cohen, Y. (2006). "Tensile deformation of electrospun nylon-6,6 nanofibers." Journal of Polymer Science, Part B, Polymer Physic, Vol. 44, No. 10, pp. 1482-1489. https://doi.org/10.1002/polb.20803