Acknowledgement
Supported by : ARC Discovery
References
- Aguib, S., Nour, A., Zahloul, H., Bossis, G., Chevalier, Y. and Lancon, P. (2014), "Dynamic behavior analysis of a magnetorheological elastomer sandwich plate", Int. J. Mech. Sci., 87, 118-136. https://doi.org/10.1016/j.ijmecsci.2014.05.014
- Bocian, M., Kaleta, J., Lewandowski, D. and Przybylski, M. (2017), "Tunable Absorption System based on magnetorheological elastomers and Halbach array: design and testing", J. Magnet. Magnetic Mater., 435, 46-57. https://doi.org/10.1016/j.jmmm.2017.03.071
- Carlson, J.D. and Jolly, M.R. (2000), "MR fluid, foam and elastomer devices", Mechatronics, 10(4-5), 555-569. https://doi.org/10.1016/S0957-4158(99)00064-1
- Deng, H.X. and Gong, X.L. (2007), "Adaptive tuned vibration absorber based on magnetorheological elastomer", J. Intel. Mater. Syst. Struct., 18(12), 1205-1210. https://doi.org/10.1177/1045389X07083128
- Dyniewicz, B., Bajkowski, J.M. and Bajer, C.I. (2015), "Semiactive control of a sandwich beam partially filled with magnetorheological elastomer", Mech. Syst. Signal Process., 60-61, 695-705. https://doi.org/10.1016/j.ymssp.2015.01.032
- Gu, X., Yu, Y., Li, J. and Li, Y. (2017), "Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model", J. Sound Vib., 406, 346-362. https://doi.org/10.1016/j.jsv.2017.06.023
- Jung, H.J., Eem, S.H., Jang, D.D. and Koo, J.H. (2011), "Seismic performance analysis of a smart base-isolation system considering dynamics of MR elastomers", J. Intel. Mater. Syst. Struct., 22(13), 1439-1450. https://doi.org/10.1177/1045389X11414224
- Jung, H.S., Kwon, S.H., Choi, H.J., Jung, J.H. and Kim, Y.G. (2016), "Magnetic carbonyl iron/natural rubber composite elastomer and its magnetorheology", Compos. Struct., 136, 106-112. https://doi.org/10.1016/j.compstruct.2015.10.008
- Karavasilis, T.L., Ricles, J.M., Sause, R. and Chen, C. (2011), "Experimental evaluation of the seismic performance of steel MRFs with compressed elastomer dampers using large-scale real-time hybrid simulation", Eng. Struct., 33(6), 1859-1869. https://doi.org/10.1016/j.engstruct.2011.01.032
- Korobko, E.V., Mikhasev, G.I., Novikova, Z.A. and Zhurauski, M.A. (2012), "On damping vibrations of three-layered beam containing magnetorheological elastomer", J. Intel. Mater. Syst. Struct., 23(9), 1019-1023. https://doi.org/10.1177/1045389X12443596
- Lee, D.W., Lee, K., Lee, C.H., Kim, C.H. and Cho, W.O. (2012), "A study on the tribological characteristics of a magnetorheological elastomer", ASME J. Tribol., 135(1), 014501-014501. https://doi.org/10.1115/1.4023080
- Nayak, B., Dwivedy, S.K. and Murthy, K.S.R.K. (2013), "Dynamic stability of magnetorheological elastomer based adaptive sandwich beam with conductive skins using FEM and the harmonic balance method", Int. J. Mech. Sci., 77, 205-216. https://doi.org/10.1016/j.ijmecsci.2013.09.010
- Schubert, G. and Harrison, P. (2015), "Large-strain behaviour of magneto-rheological elastomers tested under uniaxial compression and tension, and pure shear deformations", Polym. Test., 42, 122-134. https://doi.org/10.1016/j.polymertesting.2015.01.008
- Sun, Q., Zhou, J.X. and Zhang, L. (2003), "An adaptive beam model and dynamic characteristics of magnetorheological materials", J. Sound Vib., 261(3), 465-481. https://doi.org/10.1016/S0022-460X(02)00985-9
- Sun, S.S., Yang, J., Li, W.H., Du, H., Alici, G., Yan, T.H. and Nakano, M. (2017a), "Development of an isolator working with magnetorheological elastomers and fluids", Mech. Syst. Signal Process., 83, 371-384. https://doi.org/10.1016/j.ymssp.2016.06.020
- Sun, S., Yang, J., Yildirim, T., Du, H., Alici, G., Zhang, S. and Li, W. (2017b), "Development of a nonlinear adaptive absorber based on magnetorheological elastomer", J. Intel. Mater. Syst. Struct., 1045389X17733053. https://doi.org/10.1177/1045389X17733053
- Sun, S.S., Yildirim, T., Wu, J., Yang, J., Du, H., Zhang, S.W. and Li, W.H. (2017c), "Design and verification of a hybrid nonlinear MRE vibration absorber for controllable broadband performance", Smart Mater. Struct., 26(9), 095039. https://doi.org/10.1088/1361-665X/aa7b52
- Wang, Q., Dong, X., Li, L. and Ou, J. (2017), "A nonlinear model of magnetorheological elastomer with wide amplitude range and variable frequencies", Smart Mater. Struct., 26(6), 065010. https://doi.org/10.1088/1361-665X/aa66e3
- Yildirim, T., Ghayesh, M.H., Li, W. and Alici, G. (2015), "An experimental investigation into nonlinear dynamics of a magneto-rheological elastomer sandwich beam", Smart Mater. Struct., 25(1), 015018. https://doi.org/10.1088/0964-1726/25/1/015018
- Yildirim, T., Ghayesh, M.H., Li, W. and Alici, G. (2016a), "Experimental nonlinear dynamics of a geometrically imperfect magneto-rheological elastomer sandwich beam", Compos. Struct., 138, 381-390. https://doi.org/10.1016/j.compstruct.2015.11.063
- Yildirim, T., Ghayesh, M.H., Li, W. and Alici, G. (2016b), "Nonlinear dynamics of a parametrically excited beam with a central magneto-rheological elastomer patch: An experimental investigation", Int. J. Mech. Sci., 106, 157-167. https://doi.org/10.1016/j.ijmecsci.2015.11.032
- Ying, Z.G., Ni, Y.Q. and Ye, S.Q. (2014), "Stochastic microvibration suppression of a sandwich plate using a magnetorheological visco-elastomer core", Smart Mater. Struct., 23(2), 025019. https://doi.org/10.1088/0964-1726/23/2/025019
- York, D., Wang, X. and Gordaninejad, F. (2011), "A new magnetorheological mount for vibration control", ASME J. Vib. Acoust., 133(3), 031003-031003. https://doi.org/10.1115/1.4002840
- Zhang, J., Yildirim, T., Alici, G., Zhang, S. and Li, W. (2018), "Experimental nonlinear vibrations of an MRE sandwich plate", Smart Struct. Syst., Int. J., 22(1), 71-79. https://doi.org/10.12989/sss.2018.22.1.071
- Zhou, G.Y. and Wang, Q. (2005), "Magnetorheological elastomerbased smart sandwich beams with nonconductive skins", Smart Mater. Struct., 14(5), 1001. https://doi.org/10.1088/0964-1726/14/5/038
- Zhou, G.Y. and Wang, Q. (2006), "Use of magnetorheological elastomer in an adaptive sandwich beam with conductive skins. Part II: Dynamic properties", Int. J. Solids Struct., 43(17), 5403-5420. https://doi.org/10.1016/j.ijsolstr.2005.07.044