참고문헌
- Aeronautics Learning Labratory for Science Technology and Research (ALLSTAR) of the Florida International University, (2011), Propeller Aircraft Performance and The Bootstrap Approach, http://www.allstar.fiu.edu/aero/BA-Background.htm.
- Airliners.net (2015), http://www.airliners.net/aircraft-data/stats.main?id=145, Santa Monica, California, U.S.A.
- Allaire, F., Tarbouchi, M. and Labonte, G. (2009), "FPGA implementation of genetic algorithm for UAV real-time path planning", J. Intell. Robot. Syst., 54 (1-3), 495-510. https://doi.org/10.1007/978-1-4020-9137-7_26.
- Ambrosino, G., Ariola, M., Ciniglio, U., Corraro, F., De Lellis, E. and Pironti, A. (2009), "Path generation and tracking in 3-D for UAVs", IEEE T. Control Syst. Technol., 17(4), 980-988. https://doi.org/10.1109/TCST.2009.2014359.
- Anderson, J.D. Jr (2000), Introduction to Flight, Fourth Edition, McGraw-Hill Series in Aeronautical and Aerospace Engineering, Toronto, Canada.
- Babaei, A.R. and Mortazavi, M. (2010), "Three-dimensional curvature-constrained trajectory planning based on in-flight waypoints", J. Aircraft, 47(4), 1391-1398. https://doi.org/10.2514/1.47711.
- Boschetti, P.J., Gonzalez, P. and Cardenas, E.M. (2015), "Program to calculate the performance of airplanes driven by a fixed-pitch propeller", Proceedings of the AIAA Atmospheric Flight Mechanics Conference, AIAA SciTech Forum, (AIAA 2015-0015), Kissimmee, Florida, U.S.A., January.
- Carpenter, P. (2018), RC Aerobatic Airplanes, RC Airplane World, https://www.rc-airplane-world.com/rc-aerobatic-airplanes.html
- Cavcar, M. (2004), Propeller, School of Civil Aviation, Eskisehir, Turkey. https://fr.scribd.com/document/230664341/Propeller.
- Chandler, P., Rasmussen, S. and Pachter, M. (2000), "UAV cooperative path planning", Proceedings of the AIAA Guidance, Navigation, and Control Conference, Denver, Colorado, U.S.A., August.
- Chitsaz, H. and LaValle, S.M. (2007), "Time-optimal paths for a Dubins airplane", Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, Louisiana, U.S.A., December.
- Commercial Aviation Safety Team (CAST), (2011), Propeller Operation and Malfunctions Basic Familiarization for Flight Crews, http://www.cast-safety.org/pdf/4_propeller_fundamentals.pdf.
- Dubins, L.E. (1957), "On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents", Amer. J. Math., 79, 497-516. https://doi.org/10.2307/2372560
- Eshelby, M.E. (2000), Aircraft Performance: Theory and Practice, in American Institute of Aeronautics and Astronautics Education Series, Przemieniecki, J.S. Series Editor-in-Chief, AIAA, Inc., Reston, Virginia, U.S.A.
- Filippone, A. (2006), Flight Performance of Fixed and Rotary Wing Aircraft, in American Institute of Aeronautics and Astronautics Education Series, Schetz, J.A. Series Editor-in-Chief, AIAA, Inc. and Butterworth-Heinemann, Herndon, Virginia, U.S.A.
- Frazzoli, E., Dahleh, M.A. and Feron, E. (2005), "Maneuver-based motion planning for nonlinear systems with symmetries", IEEE T. Robot., 21(6), 1077-1091. https://doi.org/10.1109/TRO.2005.852260.
- Gao, X.Z., Hou, Z.X., Zhu, X.F., Zhang, J.T. and Chen, X.Q. (2013), "The shortest path planning for manoeuvres of UAV", Acta Polytechnica Hungarica, 10(1), 221-239.
- Hale, F.J. (1984), Introduction to Aircraft Performance, Selection, and Design, John Wiley & Sons, New York, U.S.A.
- Horizon Hobby (2017), https://www.horizonhobby.com/product/airplanes/airplane-accessories/airplane-engines-15042--1/gt80-twin-cylinder-(488-cu-in)-zene80t.
- Hota, S and Ghose, D. (2010), "Optimal geometrical path in 3D with curvature constraint", Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, October.
- Hota, S. and Ghose, D. (2014), "Optimal trajectory planning for path convergence in three-dimensional space", Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 228(5) 766-780. https://doi.org/10.1177%2F0954410013479714. https://doi.org/10.1177/0954410013479714
- Hwangbo, M., Kuffner, J. and Kanade, T. (2007), "Efficient two-phase 3D motion planning for small fixed-wing UAVs", Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, April.
- Jia, D. and Vagners, J. (2004), "Parallel evolutionary algorithms for UAV path planning", Porceedings of the AIAA 1st Intelligent Systems Technical Conference, Chicago, Illinois, U.S.A., September.
- Jiabo, W., Li, L., Teng, L. and Zhu, W. (2012), "Three-dimensional constrained UAV path planning using modified particle swarm optimization with digital pheromones", Proceedings of the EngOpt 2012- 3rd International Conference on Engineering Optimization, Rio de Janeiro, Brazil, July.
- Judd, K.B. (2001), "Trajectory planning strategies for unmanned air vehicles", Master Thesis, Brigham Young University, Provo, Utah, U.S.A.
- Kok, K.Y. and Rajendran, P. (2016), "Differential evolution control parameter optimization for unmanned aerial vehicle path planning", PLoS ONE, 11(3), https://doi.org/10.1371/journal.pone.0150558.
- Labonte, G. (2012), "Formulas for the fuel of climbing propeller driven planes", Aircraft Eng. Aerosp. Technol., 84(1), 23-36. https://doi.org/10.1108/00022661211194951.
- Labonte, G. (2015), "Simple formulas for the fuel of climbing propeller driven airplanes", Adv. Aircraft Spacecraft Sci., 2(4), 367-389. https://doi.org/10.12989/aas.2015.2.4.367.
- Labonte, G. (2016), "Airplanes at constant speeds on inclined circular trajectories", Adv. Aircraft Spacecraft Sci., 3(4), 399-425. https://doi.org/10.12989/aas.2016.3.4.399.
- Labonte, G. (2018), "On determining the flyability of airplane rectilinear trajectories at constant velocity", Adv. Aircraft Spacecraft Sci., 5(5), 551-579. https://doi.org/10.12989/aas.2018.5.5.551.
- Mair, W.A and Birdsall, D.L. (1992), Aircraft performance, Cambridge University Press, Cambridge, U.K.
- Maplesoft (2018), The Maple Software, https://www.maplesoft.com/contact/webforms/google/maple/MathSoftware.aspx?p=TC-5502&gclid=EAIaIQobChMIyqKc_oC93AIVB7bACh1wQgz7EAAYASAAEgLk2_D_BwE.
- McIver, J. (2003), Cessna Skyhawk II /100, Performance Assessment, Temporal Images, Melbourne, Australia, http://www.temporal.com.au/c172.pdf.
- Niendorf, M., Schmitt, F. and Adolf, F.M. (2013), "Multi-query path planning for an unmanned vixed-wing aircraft", Proceedings of the AIAA Guidance, Navigation and Control (GNC) Conference, Boston, Massachusetts, U.S.A., August.
- Nikolos, I.K., Tsourveloudis, N.C. and Valavanis, K.P., (2003), "Evolutionary algorithm based 3-D path planner for UAV navigation", IEEE T. Syst. Man Cybernet. Part B Cybernet., 33(6), 898-912. https://doi.org/10.1109/TSMCB.2002.804370.
- Parsch, A. (2006), "Silver Fox", Directory of U.S. Military Rockets and Missiles, Appendix 4, http://www.designation-systems.net/dusrm/app4/silverfox.html.
- Phillips, W.F. (2004), Mechanics of Flight, John Wiley & Sons, Inc., Hoboken, New Jersey, U.S.A.
- Ramana, M.V., Varma, S.A. and Kothari, M. (2016), "Motion planning for a fixed-wing UAV in urban environments", Proceedings of the 4th IFAC Conference on Advances in Control and Optimization of Dynamical Systems ACODS 2016, Tiruchirappalli, India, February.
- Roberge, V., Tarbouchi, M. and Labonte, G (2012), "Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning", IEEE T. Industr. Inform., 9(1), 132-141. https://doi.org/10.1109/TII.2012.2198665.
- Roud, O. and Bruckert, D. (2006), Cessna 182 Training Manual, in Red Sky Ventures and Memel CATS, Second Edition 2011, Windhoek, Namibia.
- Rudnick-Cohen, E., Azarm, S. and Herrmann, J.W. (2015), "Multi-objective design and path planning optimization of unmanned aerial vehicles (UAVs)", Proceedings of the 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Dallas, Texas, U.S.A., June.
- Stengel, R.F. (2004), Flight Dynamics, Princeton University Press, Princeton, New Jersey, U.S.A.
- Torenbeek, E. (1976), Synthesis of Subsonic Airplane Design, Delft University Press, Rotterdam, The Netherlands.
- Wang, X., Jiang, P., Li, D. and Sun, T. (2017), "Curvature continuous and bounded path planning for fixed-wing UAVs", Proceedings of the Sensors 2017, Glasgow, Scotland, U.K., October-November.
- Wang, Z., Liu, L., Long, T., Yu, C. and Kou, J. (2014), "Enhanced sparse A* search for UAV path planning using dubins path estimation", Proceedings of the 33rd Chinese Control Conference (CCC), Nanjing, China, July.
- Xia, L., Jun, X., Manyi, C., Ming, X. and Zhike, W. (2009), "Path planning for UAV based on improved A* algorithm", Proceedings of the 9th International Conference on Electronic Measurement & Instruments, ICEMI '09, Beijing, China, August.
- Yang, K. and Sukkarieh, S. (2010), "An analytical continuous-curvature path-smoothing algorithm", IEEE T. Robot., 26(3), 561-568. https://doi.org/10.1109/TRO.2010.2042990.
- Yechout, T.R., Morris, S.L., Bossert, D.E. and Hallgren, W.F. (2003), Introduction to Aircraft Flight Mechanics: Performance, Static Stability, Dynamic Stability, and Classical Feedback Control, in American Institute of Aeronautics and Astronautics Education Series, Schetz, J.A. Series Editor-in-Chief, AIAA, Inc., Reston, Virginia, U.S.A.
- Zhan, W., Wang, W., Chen, N. and Wang, C. (2014), "Efficient UAV path planning with multiconstraints in a 3D large battlefield environment", Math. Probl. Eng. http://dx.doi.org/10.1155/2014/597092.
- Zheng, C., Ding, M. and Zhou, C. (2003), "Real-Time route planning for unmanned air vehicle with an evolutionary algorithm," Int. J. Pattern Recog. Artif. Intell., 17(1), 63-81. https://doi.org/10.1142/S021800140300223X.
피인용 문헌
- Point de référence pour la planification de trajectoires d’UAV à voilure fixe vol.9, pp.1, 2021, https://doi.org/10.1139/juvs-2019-0022