References
- Bhargaw, H.N., Ahmed, M. and Sinha, P. (2013), "Thermo-electric behaviour of niti shape memory alloy", T. Nonferr. Metal Soc. China, 23(8), 2329-2335. https://doi.org/10.1016/S1003-6326(13)62737-5.
- Zhao, Z., Chen, Z., Wang, X., HaoXu and Liu, H. (2016), "Wind-induced response of large-span structures based on pod-pseudo-excitation method", Advan. Steel Constr., 12(1), 1-16.
- Choi, S. and Lee, J.J. (1998), "The shape control of a composite beam with embedded shape memory alloy wire actuators", Smart Mater. Struct. 7(6), 759-770. https://doi.org/10.1088/0964-1726/7/6/004
- Cromack, F.W. and Perkins D.E. (1978), "Wind turbine blade stress analysis and natural frequencies", Wind Energy Center Report.
- Feng, W. and Gomez-Rivas, A. (2005), "An experimental approach for evaluating harmonic frequencies of a flexible beam", Age, 10, 1-8. https://doi.org/10.1007/BF02431764
- Hu, Y. R. and Vukovich, G. (2005), "Active robust shape control of flexible structures", Mechatronics, 15(7), 807-820. https://doi.org/10.1016/j.mechatronics.2005.02.004.
- Irschik, H. (2002), "A review on static and dynamic shape control of structures by piezoelectric actuation", Eng. Struct., 24(1), 5-11. https://doi.org/10.1016/S0141-0296(01)00081-5.
- Kim, S. and Cho, M. (2010). "A simple smart wing actuator using ni-ti SMA", J. Mech. Sci. Technol., 24(9), 1865-1873. https://doi.org/10.1007/s12206-010-0609-8.
- Kumar, A., Dwivedi, A., Paliwal, V. and Patil, P.P. (2014), "Free vibration analysis of Al 2024 wind turbine blade designed for Uttarakhand region based on FEA", Proc. Technol., 14, 336-347. https://doi.org/10.1016/j.protcy.2014.08.044.
- Lau, K.T. (2002), "Control of natural frequencies of a clamped - clamped composite beam with embedded shape memory alloy wires", Comp. Struct., 58(1), 39-47. https://doi.org/10.1016/S0263-8223(02)00042-9.
- Lee, J.W., Han J.H., Shin, H.K. and Bang, H.J. (2014), "Active load control of wind turbine blade section with trailing edge flap: wind tunnel testing", J. Intel. Mat. Syst. Str., 25(18), 2246-2255. https://doi.org/10.1177%2F1045389X14544143. https://doi.org/10.1177/1045389X14544143
- Lin, Y.J., Lee, T., Choi, B. and Saravanos, D. (1999), "An application of smart-structure technology to rotor blade tip vibration control", J. Vib. Control, 5(4), 639-658. https://doi.org/10.1177%2F107754639900500408. https://doi.org/10.1177/107754639900500408
- Martinez Vazquez, P. (2016), "Wind-induced vibrations of structures using design spectra", Int. J. Advan. Struct. Eng., 8(4), 379-389. https://doi.org/10.1007/s40091-016-0139-4.
- Mevada, H. and Patel, D. (2016), "Experimental Determination of Structural Damping of Different Materials", Proc. Eng., 144, 110-115. http://10.1016/j.proeng.2016.05.013.
- Mollasalehi, E., Sun, Q. and Wood, D. (2013), "Contribution of small wind turbine structural vibration to noise emission", Energies, 6(8), 3669-3691. https://doi.org/10.3390/en6083669.
- Mouleeswaran, S.K., Mani, Y., Keerthivasan, P. and Veeraragu, J. (2018), "Vibration control of small horizontal axis wind turbine blade with shape memory alloy", Smart Struct. Syst., 21(3), 257-262. https://doi.org/10.12989/sss.2018.21.3.257.
- Ni, Q.Q., Zhang, R.X., Natsuki, T. and Iwamoto, M. (2007), "Stiffness and vibration characteristics of SMA/ER3 composites with shape memory alloy short fibers", Compos. Struct., 79(4), 501-507. https://doi.org/10.1016/j.compstruct.2006.02.009.
- O'Toole, K.T., McGrath, M.M. and Coyle, E. (2009), "Analysis and evaluation of the dynamic performance of SMA actuators for prosthetic hand design", J. Mat. Eng. Perform., 18(5-6), 781-786. https://doi.org/10.1007/s11665-009-9431-9.
- Pabut, O., Allikas, G., Herranen, H., Talalaev, R. and Vene, K. (2012), "Model validation and structural analysis of a small wind turbine blade", 8th International DAAAAM Baltic Conference, Tallinn, Estonia, April.
- Seelecke, S. and Muller, I. (2004), "Shape memory alloy actuators in smart structures: modeling and simulation", Appl. Mech. Rev. 57(1), 23-46. https://doi.org/10.1115/1.1584064.
- Sellami, T., Berriri, H., Darcherif, A.M., Jelassi, S. and Mimouni, M.F. (2016), "Modal and harmonic analysis of three-dimensional wind turbine models", Wind Eng., 40(6), 518-527. https://doi.org/10.1177%2F0309524X16671093. https://doi.org/10.1177/0309524X16671093
- Simonovic, A.M., Jovanovic, M.M., Lukic, N.S., Zoric, N.D., Stupar, S.N. and Ilic, S.S. (2016), "Experimental studies on active vibration control of smart plate using a modified PID controller with optimal orientation of piezoelectric actuator", J. Vib. Control, 22(11), 2619-2932. https://doi.org/10.1177%2F1077546314549037. https://doi.org/10.1177/1077546314549037
- Song, G., Kelly, B. and Agrawal, B.N. (2000), "Active position control of a shape memory alloy wire actuated composite beam", Smart Mater. Struct. 9(5), 711-716. https://doi.org/10.1088/0964-1726/9/5/316
- Umesh, K. and Ganguli, R. (2009), "Shape and vibration control of a smart composite plate with matrix cracks", Smart Mater.. Struct., 18(2), 025002. https://doi.org/10.1088/0964-1726/18/2/025002
- Vitiello, A., Giorleo, G. and Morace, R.E. (2005), "Analysis of thermomechanical behaviour of nitinol wires with high strain rates", Smart Mater. Struct. 14(1), 215-221. https://doi.org/10.1088/0964-1726/14/1/021
Cited by
- Analytical model of shape memory alloy embedded smart beam, under actuated condition vol.27, pp.6, 2020, https://doi.org/10.12989/sss.2021.27.6.991
- Long-term fatigue reliability enhancement of horizontal axis wind turbine blade vol.33, pp.2, 2020, https://doi.org/10.12989/was.2021.33.2.169