• Title/Summary/Keyword: smart blade

Search Result 40, Processing Time 0.027 seconds

Dynamic behavior of smart material embedded wind turbine blade under actuated condition

  • Mani, Yuvaraja;Veeraragu, Jagadeesh;Sangameshwar, S.;Rangaswamy, Rudramoorthy
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.211-217
    • /
    • 2020
  • Vibrations of a wind turbine blade have a negative impact on its performance and result in failure of the blade, therefore an approach to effectively control vibration in turbine blades are sought by wind industry. The small domestic horizontal axis wind turbine blades induce flap wise (out-of-plane) vibration, due to varying wind speeds. These flap wise vibrations are transferred to the structure, which even causes catastrophic failure of the system. Shape memory alloys which possess physical property of variable stiffness across different phases are embedded into the composite blades for active vibration control. Previously Shape memory alloys have been used as actuators to change their angles and orientations in fighter jet blades but not used for active vibration control for wind turbine blades. In this work a GFRP blade embedded with Shape Memory Alloy (SMA) and tested for its vibrational and material damping characteristics, under martensitic and austenite conditions. The embedment portrays 47% reduction in displacement of blade, with respect to the conventional blade. An analytical model for the actuated smart blade is also proposed, which validates the harmonic response of the smart blade.

Vibration control of small horizontal axis wind turbine blade with shape memory alloy

  • Mouleeswaran, Senthil Kumar;Mani, Yuvaraja;Keerthivasan, P.;Veeraragu, Jagadeesh
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.257-262
    • /
    • 2018
  • Vibrational problems in the domestic Small Horizontal Axis Wind Turbines (SHAWT) are due to flap wise vibrations caused by varying wind velocities acting perpendicular to its blade surface. It has been reported that monitoring the structural health of the turbine blades requires special attention as they are key elements of a wind power generation, and account for 15-20% of the total turbine cost. If this vibration problem is taken care, the SHAWT can be made as commercial success. In this work, Shape Memory Alloy (SMA) wires made of Nitinol (Ni-Ti) alloys are embedded into the Glass Fibre Reinforced Polymer (GFRP) wind turbine blade in order to reduce the flapwise vibrations. Experimental study of Nitinol (Ni-Ti) wire characteristics has been done and relationship between different parameters like current, displacement, time and temperature has been established. When the wind turbine blades are subjected to varying wind velocity, flapwise vibration occurs which has to be controlled continuously, otherwise the blade will be damaged due to the resonance. Therefore, in order to control these flapwise vibrations actively, a non-linear current controller unit was developed and fabricated, which provides actuation force required for active vibration control in smart blade. Experimental analysis was performed on conventional GFRP and smart blade, depicted a 20% increase in natural frequency and 20% reduction in amplitude of vibration. With addition of active vibration control unit, the smart blade showed 61% reduction in amplitude of vibration.

Rotational Behavior Tests of Smart Blades

  • Ogawa, Akinori;Hashimoto, Ryosaku;Matsuda, Yukio;Sofue, Yasushi;Hojo, Masahito
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.867-869
    • /
    • 2004
  • A smart blade conception has been proposed by the authors. With stretching-twisting coupling effect, the blade is twisted by centrifugal load or ambient temperature change. In this paper, the blades, made by three kinds of anti-symmetric laminates, are investigated by rotational tests. The results show the angle of smart blade tips increases in proportion to the 2nd power of a rotating speed and is well in agreement with the numerical results by FEM.

  • PDF

Localization Development of Rotor Blade for Smart Unmanned Aerial Vehicle (스마트무인기 로터 블레이드 국산화 개발)

  • Lee, Myeonk-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.11-19
    • /
    • 2011
  • A localization development of Composite rotor blade for Smart Unmanned Aerial Vehicle(SUAV) has been conducted. Overall localization development encompassed selection of domestic composite material having similar properties to that of original one at its best, coupon tests for data base of new material properties, re-calculation of blade sectional properties, and validation of structural/dynamic design requirements such as isolation of rotor natural frequency from excitation, static and fatigue strength, aeroelastic stability. The results of all these activities are described. This paper briefly discusses the improved manufacturing process for the localization of SUAV blade.

An efficient vibration control strategy for reliability enhancement of HAWT blade

  • Sajeer, M. Mohamed;Chakraborty, Arunasis;Das, Sourav
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.703-720
    • /
    • 2020
  • This paper investigates the safety of the wind turbine blade against excessive deformation. For this purpose, the performance of the blade in the along-wind direction is improved by longitudinal stiffener made of shape memory alloy. The rationale behind the selection of this smart material is due to its ability to offer excellent thermo-mechanical behaviour at low strain. Here, Liang-Roger model is adopted for vibration control, and the super-elastic effects are utilised for blade stiffening. Turbulent wind fields are generated at the hub height using TurbSim and the corresponding loads are evaluated using blade element momentum theory. An efficient switching algorithm is developed along with performance curves that enable the designer to select an optimal mode of heating depending upon the operational scenario. Numerical results presented in this paper clearly demonstrate the performance envelope of the proposed stiffener and its influence on the reliability of the blade.

Development of Cutting Route Recognition Technology of a Double-Blade Road Cutter Using a Vision Sensor (비전센서를 활용한 양날 도로절단기의 절단경로 인식 기술 개발)

  • Myoung Kook Seo;Jin Wook Kown;Hwang Hun Jeong;Jung Ham Ju;Young Jin Kim
    • Journal of Drive and Control
    • /
    • v.20 no.1
    • /
    • pp.8-15
    • /
    • 2023
  • With the recent trend of intelligence and automation of construction work, a double-blade road cutter is being developed that automatically enables cutting along the cutting line marked on the road using a vision system. The road cutter can recognize the cutting line through the camera and correct the driving route in real-time, and it detects the load of the cutting blade in real-time to control the driving speed in case of overload to protect workers and cutting blades. In this study, a vision system mounted on a double-blade road cutter was developed. A cutting route recognition technology was developed to stably recognize cutting lines displayed on non-uniform road surfaces, and performance was verified in similar environments. In addition, a vision sensor protection module was developed to prevent foreign substances (dust, water, etc.) generated during cutting from being attached to the camera.

Analysis of shaft torsion of a DFIG for a wind farm collector system fault (풍력발전단지 집합 시스템 사고 시 DFIG의 Shaft Torsion 분석)

  • Yoon, Eui-Sang;Lee, Jin-Shik;Lee, Young-Gui;Zheng, Tai-Ying;Kang, Yong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.93-94
    • /
    • 2011
  • This paper analyzes the shaft torsion of a doubly-fed induction generator (DFIG) for a wind farm collector system fault. When a fault occurs, the active power of the DFIG cannot be transmitted to the grid and thus accelerates the rotation of both the blade and the rotor. Due to the different inertia of these, the angle of deviation fluctuates and the shaft torsion is occurred. This becomes much severe when the rotational speed of the blade exceeds a threshold, which activating the pitch control to reduce the mechanical power. The torque, which can be sixty times larger than that in the steady state, may destroy the shaft. The shaft torsion phenomena are simulated using the EMTP-RV simulator. The results indicate that when a wind farm collector system fault occurs, a severe shaft torsion is occurred due to the activation of the pitch control.

  • PDF

Energy harvesting using an aerodynamic blade element at resonant frequency with air excitation

  • Bolat, Fevzi C.;Sivrioglu, Selim
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.379-390
    • /
    • 2019
  • In this research, we propose an energy harvesting structure with a flexible blade element vibrating at its first mode to maximize the power output of the piezoelectric material. For this purpose, a piezoelectric patch was attached on the blade element used in a small-scale wind turbine, and air load was applied with a suitable angle of attack in the stall zone. The aerodynamic load created by air excitation vibrates the blade element in its first natural frequency and maximizes the voltage output of the piezoelectric patch. The variation of power outputs with respect to electrical resistance, air speed, and extra mass is experimentally investigated for various cases. An analytical model is constituted using a single-mode blade element with piezoelectric patch dynamics, and the power outputs of the obtained model are compared with experimental results.

Thermally-Induced Vibration Control of Rotating Composite Thin-Walled Blade (회전하는 복합재 블레이드의 열진동 해석 및 제어)

  • Jung, Hoe-Do;Na, Sung-Soo;Kwak, Mun-Kyu;Heo, Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1696-1701
    • /
    • 2003
  • This paper deals with a vibration control analysis of a rotating composite blade, modeled as a tapered thinwalled beam induced by heat flux. The displayed results reveal that the thermally induced vibration yields a detrimental repercussions upon their dynamic responses. The blade consists of host graphite epoxy laminate with surface and spanwise distributed transversely isotropic (PZT-4) sensors and actuators. The controller is implemented via the negative velocity and displacement feedback control methodology, which prove to overcome the deleterious effect associated with the thermally induced vibration. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, secondary warping, anisotropy of constituent materials, and rotary inertias.

  • PDF

A Study on the Individuation Process of the Protagonist in the Webtoon <Return of the Blossoming Blade> (웹툰 <화산귀환> 주인공 개성화 과정 연구)

  • Soyeong, LIm
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.152-158
    • /
    • 2023
  • This study analyzed the consciousness, unconsciousness, and individuation process of 'Cheongmyeong', the protagonist presented in the webtoon "Return of the Blossoming Blade", based on Jung's theory of individuation. The subject of the research was the webtoon "Return of the Blossoming Blade", which has formed a readership across various genders and age groups, based on a successful web novel. The individuation process of the protagonist of "Return of the Blossoming Blade", analyzed using Jung's theory, is as follows: Firstly, the protagonist's ego originated from the shadow derived from the unconscious. Secondly, the protagonist's persona is social and positive in reality, but the personal persona manifested as an unrevealed shadow. Thirdly, the protagonist's anima/animus connects the profound inner consciousness with reality, maintaining a complementary relationship with the persona. Fourthly, the protagonist's Self symbolizes the collective ideal human and the essence of the volcano. The protagonist was shown to achieve individuation through a continuous repetitive process of integrating consciousness and unconsciousness, and through the compensatory process.