DOI QR코드

DOI QR Code

Practical optimization of power transmission towers using the RBF-based ABC algorithm

  • Received : 2019.07.03
  • Accepted : 2019.10.16
  • Published : 2020.02.25

Abstract

This paper is aimed to address a simultaneous optimization of the size, shape, and topology of steel lattice towers through a combination of the radial basis function (RBF) neural networks and the artificial bee colony (ABC) metaheuristic algorithm to reduce the computational time because mere metaheuristic optimization algorithms require much time for calculations. To verify the results, use has been made of the CIGRE Tower and a 132 kV transmission towers as numerical examples both based on the design requirements of the ASCE10-97, and the size, shape, and topology have been optimized (in both cases) once by the RBF neural network and once by the MSTOWER analyzer. A comparison of the results shows that the neural network-based method has been able to yield acceptable results through much less computational time.

Keywords

References

  1. ASCE 10-97 (2000), Design of latticed steel transmission line towers, American Society of Civil Engineers, U.S.A.
  2. Belegundu, A.D. and Chandrupatla, T.R. (2014), Optimization Concepts and Applications in Engineering, Cambridge University Press, United Kingdom.
  3. Chatterjee, S., Sarkar, S., Hore, S., Dey, N., Ashour, A.S., Shi, F. and Le, D.N. (2017), "Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm", Struct. Eng. Mech., 63(4), 429-438. https://doi.org/10.12989/sem.2017.63.4.000.
  4. Cheng, J., Cai, C.S. and Xiao, R.C. (2007), "Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures", Struct. Eng. Mech., 26(3), 251-262. https://doi.org/10.12989/sem.2007.26.3.251.
  5. Chunming, W. E., Tingting, S. U., Bin, M. A. and Jing, G. (2012), "Research on the optimal layout of high-strength steel in the transmission tower", Physics Procedia, 33, 619-625. https://doi.org/10.1016/j.phpro.2012.05.112.
  6. CIGRE (2009), Influence of the Hyperstatic Modeling on the Behavior of Transmission Line Lattice Structures, Conseil International des Grands Reseaux Electriques, Technical Brochure 387, Paris(1), 238.
  7. Couceiro, I., Paris, J., Martinez, S., Colominas, I., Navarrina, F. and Casteleiro, M. (2016), "Structural optimization of lattice steel transmission towers", Eng. Struct., 117, 274-286. https://doi.org/10.1016/j.engstruct.2016.03.005.
  8. Cui, L., Li, G., Zhu, Z., Lin, Q., Wen, Z., Lu, N., Ka-Chun, W. and Chen, J. (2017), "A novel artificial bee colony algorithm with an adaptive population size for numerical function optimization", Info. Sci., 414, 53-67. https://doi.org/10.1016/j.ins.2017.05.044.
  9. Delgarm, N., Sajadi, B. and Delgarm, S. (2016), "Multi-objective optimization of building energy performance and indoor thermal comfort: A new method using artificial bee colony (ABC)", Energ. Buildings, 131, 42-53. https://doi.org/10.1016/j.enbuild.2016.09.003.
  10. Dizangian, B., & Ghasemi, M. R. (2016), "An efficient method for reliable optimum design of trusses", Steel Compos. Struct., 21(5), 1069-1084. http://dx.doi.org/10.12989/scs.2016.21.5.1069.
  11. Fiouz, A. R., Obeydi, M., Forouzani, H. and Keshavarz, A. (2012), "Discrete optimization of trusses using an artificial bee colony (ABC) algorithm and the fly-back mechanism", Struct. Eng. Mech., 44(4), 501-519. http://dx.doi.org/10.12989/sem.2012.44.4.501.
  12. Gao, W., Liu, S. and Huang, L. (2012), "A global best artificial bee colony algorithm for global optimization", J. Comput. Appl. Math., 236(11), 2741-2753. https://doi.org/10.1016/j.cam.2012.01.013.
  13. Ghaboussi, J., & Wu, X. (1998), "Soft computing with neural networks for engineering applications: Fundamental issues and adaptive approaches", Struct. Eng. Mech., 6(8), 955-969. https://doi.org/10.12989/sem.1998.6.8.955.
  14. Ghiasia, R. and Ghasemi, M.R. (2018), "Optimization-based method for structural damage detection with consideration of uncertainties-a comparative study", Smart Struct. Syst., 22(5), 561-574. https://doi.org/10.12989/sss.2018.22.5.561.
  15. Guo, H. Y. and Li, Z. L. (2011), "Structural topology optimization of high-voltage transmission tower with discrete variables", Struct. Multidiscip. O., 43(6), 851-861. https://doi.org/10.1007/s00158-010-0561-3.
  16. Hartman, E. J., Keeler, J. D. and Kowalski, J. M. (1990), "Layered neural networks with Gaussian hidden units as universal approximations", Neural Comput., 2(2), 210-215. https://doi.org/10.1162/neco.1990.2.2.210.
  17. Hore, S., Chatterjee, S., Sarkar, S., Dey, N., Ashour, A. S., Balas-Timar, D. and Balas, V. E. (2016), "Neural-based prediction of structural failure of multistoried RC buildings", Struct. Eng. Mech., 58(3), 459-473. http://dx.doi.org/10.12989/sem.2016.58.3.459.
  18. Huang, G. B., Saratchandran, P. and Sundararajan, N. (2005), "A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation", IEEE Transactions on Neural Networks, 16(1), 57-67. 10.1109/TNN.2004.836241
  19. IEC 60652 (2002), Loading tests on overhead line structures, International Electrotechnical Commission, Geneva, Switzerland.
  20. Karaboga, D. (2005), "An idea based on honey bee swarm for numerical optimization (Vol. 200)", Technical Report No. tr06; Erciyes University, Turkey.
  21. Karaboga, D. and Basturk, B. (2007), "A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm", J. Global Optim., 39(3), 459-471. https://doi.org/10.1007/s10898-007-9149-x.
  22. Kaveh, A. and Ghazaan, M.I. (2018), "Optimal design of steel lattice transmission line towers", Meta-Heuristic Algorithms for Optimal Design of Real-Size Structures, Springer, Cham , 123-137.
  23. Klansek, U., Silih, S. and Kravanja, S. (2006), "Cost optimization of composite floor trusses", Steel Compos. Struct., 6(5), 435-457. https://doi.org/10.12989/scs.2016.22.5.1163.
  24. Lee, D. K., Kim, J. H., Starossek, U., & Shin, S. M. (2012), "Evaluation of structural outrigger belt truss layouts for tall buildings by using topology optimization", Struct. Eng. Mech., 43(6), 711-724. https://doi.org/10.12989/sem.2012.43.6.711.
  25. Mathakari, S., Gardoni, P., Agarwal, P., Raich, A. and Haukaas, T. (2007), "Reliability-based optimal design of electrical transmission towers using multi-objective genetic algorithms", Computer-Aided Civil Infrastructure Eng., 22(4), 282-292. https://doi.org/10.1111/j.1467-8667.2007.00485.x.
  26. Meng, K., Dong, Z. Y., Wang, D. H. and Wong, K.P. (2010), "A self-adaptive RBF neural network classifier for transformer fault analysis", IEEE T. Power Syst., 25(3), 10.1109/TPWRS.2010.2040491.
  27. Natarajan, K. and Santhakumar, A.R. (1995), "Reliability-based optimization of transmission line towers", Comput. Struct., 55(3), 387-403. https://doi.org/10.1016/0045-7949(95)98866-O.
  28. Noilublao, N. and Bureerat, S. (2011), "Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms", Comput. Struct., 89(23-24), 2531-2538. https://doi.org/10.1016/j.compstruc.2011.08.010.
  29. Paris, J., Martinez, S., Navarrina, F., Colominas, I. and Casteleiro, M. (2010), "Structural optimization of high tension towers", In Proceedings of the 2nd International Conference on Engineering Optimization, Lisbon, Portugal, September.
  30. Poggio, T. and Girosi, F. (1990), "Networks for approximation and learning", Proceedings of the IEEE, 78(9), 1481-1497. https://doi.org/10.1109/5.58326
  31. Qu, W. L., Chen, W. and Xiao, Y. Q. (2003), "A two-step approach for joint damage diagnosis of framed structures using artificial neural networks", Struct. Eng. Mech., 16(5), 581-595. https://doi.org/10.12989/sem.2003.16.5.581.
  32. Rao, G.V. (1995), "Optimum designs for transmission line towers", Comput. Struct., 57(1), 81-92. https://doi.org/10.1016/0045-7949(94)00597-V.
  33. Saxena, S. and Pathak, K.K. (2015), "Application of artificial neural networks for fully stressed design of Pratt and Howe Truss", New Technologies Sci. Eng., 2, 94-103.
  34. Schilling, R.J., Carroll, J.J. and Al-Ajlouni, A.F. (2001), "Approximation of nonlinear systems with radial basis function neural networks", IEEE T. Neur. Net., 12(1), 10.1109/72.896792.
  35. Shea, K. and Smith, I.F. (2006), "Improving full-scale transmission tower design through topology and shape optimization", J. Struct. Eng., 132(5), 781-790. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:5(781).
  36. Sheppard, D.J. and Palmer, A.C. (1972), "Optimal design of transmission towers by dynamic programming", Comput. Struct., 2(4), 455-468. https://doi.org/10.1016/0045-7949(72)90001-6.
  37. Sivakumar, P., Rajaraman, A., Samuel Knight, G.M. and Ramachandramurthy, D.S. (2004), "Object-oriented optimization approach using genetic algorithms for lattice towers", J. Comp. civil. Eng., 18(2), 162-171. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(162).
  38. Sonmez, M. (2011), "Discrete optimum design of truss structures using artificial bee colony algorithm", Struct. Multidiscip. O., 43(1), 85-97. https://doi.org/10.1007/s00158-010-0551-5.
  39. Souza, R.R. Miguel, L.F.F, Lopez, R.H.(2014), "On the size and shape optimization of transmission line towers", Proceedings of Pan-American Congress of Applied Mechanics, Santiago, Chile, 24-28 March.
  40. Souza, R. R., Miguel, L. F. F., Lopez, R. H., Miguel, L. F. F and Torii, A. J. (2016), "A procedure for the size, shape and topology optimization of transmission line tower structures", Eng. Struct., 111, 162-184. https://doi.org/10.1016/j.engstruct.2015.12.005.
  41. Tang, C. W. (2006), "Using radial basis function neural networks to model torsional strength of reinforced concrete beams", Comput. Concrete, 3(5), 335-355. http://dx.doi.org/10.12989/cac.2006.3.5.335
  42. Taniwaki, K. and Ohkubo, S. (2004), "Optimal synthesis method for transmission tower truss structures subjected to static and seismic loads", Struct. Multidiscip. O., 26(6), 441-454. https://doi.org/10.1007/s00158-003-0367-7.
  43. Tort, C., Sahin, S. and Hasancebi, O. (2017), "Optimum design of steel lattice transmission line towers using simulated annealing and PLS-TOWER", Comput. Struct., 179, 75-94. https://doi.org/10.1016/j.compstruc.2016.10.017.
  44. Tan, Z. X., Thambiratnam, D. P., Chan, T. H. T. and Razak, H. A. (2017), "Detecting damage in steel beams using modal strain energy based damage index and artificial neural network", Eng. Fail. Anal., 79, 253-262. https://doi.org/10.1016/j.engfailanal.2017.04.035.
  45. Yi, T. H., Li, H. N. and Gu, M. (2011), "Optimal sensor placement for structural health monitoring based on multiple optimization strategies", The Structural Design of Tall and Special Buildings, 20(7), 881-900. https://doi.org/10.1002/tal.712.
  46. Yi, T. H., Li, H. N. and Sun, H. M. (2013), "Multi-stage structural damage diagnosis method based on", Smart Struct. Syst., 12(3_4), 345-361.https://doi.org/10.12989/sss.2013.12.3_4.345.
  47. Yi, T. H., Li, H. N. and Zhang, X. D. (2012), "A modified monkey algorithm for optimal sensor placement in structural health monitoring", Smart Mater. Struct., 21(10), 105033. https://doi.org/10.1088/0964-1726/21/10/105033
  48. Yi, T. H., Zhou, G.D., Li, H. N. and Wang, C.W. (2017), "Optimal placement of triaxial sensors for modal identification using hierarchic wolf algorithm". Structural Control and Health Monitoring, 24(8), e1958. https://doi.org/10.1002/stc.1958.

Cited by

  1. Optimization of structural and mechanical engineering problems using the enriched ViS-BLAST method vol.77, pp.5, 2020, https://doi.org/10.12989/sem.2021.77.5.613