References
- ASCE 10-97 (2000), Design of latticed steel transmission line towers, American Society of Civil Engineers, U.S.A.
- Belegundu, A.D. and Chandrupatla, T.R. (2014), Optimization Concepts and Applications in Engineering, Cambridge University Press, United Kingdom.
- Chatterjee, S., Sarkar, S., Hore, S., Dey, N., Ashour, A.S., Shi, F. and Le, D.N. (2017), "Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm", Struct. Eng. Mech., 63(4), 429-438. https://doi.org/10.12989/sem.2017.63.4.000.
- Cheng, J., Cai, C.S. and Xiao, R.C. (2007), "Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures", Struct. Eng. Mech., 26(3), 251-262. https://doi.org/10.12989/sem.2007.26.3.251.
- Chunming, W. E., Tingting, S. U., Bin, M. A. and Jing, G. (2012), "Research on the optimal layout of high-strength steel in the transmission tower", Physics Procedia, 33, 619-625. https://doi.org/10.1016/j.phpro.2012.05.112.
- CIGRE (2009), Influence of the Hyperstatic Modeling on the Behavior of Transmission Line Lattice Structures, Conseil International des Grands Reseaux Electriques, Technical Brochure 387, Paris(1), 238.
- Couceiro, I., Paris, J., Martinez, S., Colominas, I., Navarrina, F. and Casteleiro, M. (2016), "Structural optimization of lattice steel transmission towers", Eng. Struct., 117, 274-286. https://doi.org/10.1016/j.engstruct.2016.03.005.
- Cui, L., Li, G., Zhu, Z., Lin, Q., Wen, Z., Lu, N., Ka-Chun, W. and Chen, J. (2017), "A novel artificial bee colony algorithm with an adaptive population size for numerical function optimization", Info. Sci., 414, 53-67. https://doi.org/10.1016/j.ins.2017.05.044.
- Delgarm, N., Sajadi, B. and Delgarm, S. (2016), "Multi-objective optimization of building energy performance and indoor thermal comfort: A new method using artificial bee colony (ABC)", Energ. Buildings, 131, 42-53. https://doi.org/10.1016/j.enbuild.2016.09.003.
- Dizangian, B., & Ghasemi, M. R. (2016), "An efficient method for reliable optimum design of trusses", Steel Compos. Struct., 21(5), 1069-1084. http://dx.doi.org/10.12989/scs.2016.21.5.1069.
- Fiouz, A. R., Obeydi, M., Forouzani, H. and Keshavarz, A. (2012), "Discrete optimization of trusses using an artificial bee colony (ABC) algorithm and the fly-back mechanism", Struct. Eng. Mech., 44(4), 501-519. http://dx.doi.org/10.12989/sem.2012.44.4.501.
- Gao, W., Liu, S. and Huang, L. (2012), "A global best artificial bee colony algorithm for global optimization", J. Comput. Appl. Math., 236(11), 2741-2753. https://doi.org/10.1016/j.cam.2012.01.013.
- Ghaboussi, J., & Wu, X. (1998), "Soft computing with neural networks for engineering applications: Fundamental issues and adaptive approaches", Struct. Eng. Mech., 6(8), 955-969. https://doi.org/10.12989/sem.1998.6.8.955.
- Ghiasia, R. and Ghasemi, M.R. (2018), "Optimization-based method for structural damage detection with consideration of uncertainties-a comparative study", Smart Struct. Syst., 22(5), 561-574. https://doi.org/10.12989/sss.2018.22.5.561.
- Guo, H. Y. and Li, Z. L. (2011), "Structural topology optimization of high-voltage transmission tower with discrete variables", Struct. Multidiscip. O., 43(6), 851-861. https://doi.org/10.1007/s00158-010-0561-3.
- Hartman, E. J., Keeler, J. D. and Kowalski, J. M. (1990), "Layered neural networks with Gaussian hidden units as universal approximations", Neural Comput., 2(2), 210-215. https://doi.org/10.1162/neco.1990.2.2.210.
- Hore, S., Chatterjee, S., Sarkar, S., Dey, N., Ashour, A. S., Balas-Timar, D. and Balas, V. E. (2016), "Neural-based prediction of structural failure of multistoried RC buildings", Struct. Eng. Mech., 58(3), 459-473. http://dx.doi.org/10.12989/sem.2016.58.3.459.
- Huang, G. B., Saratchandran, P. and Sundararajan, N. (2005), "A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation", IEEE Transactions on Neural Networks, 16(1), 57-67. 10.1109/TNN.2004.836241
- IEC 60652 (2002), Loading tests on overhead line structures, International Electrotechnical Commission, Geneva, Switzerland.
- Karaboga, D. (2005), "An idea based on honey bee swarm for numerical optimization (Vol. 200)", Technical Report No. tr06; Erciyes University, Turkey.
- Karaboga, D. and Basturk, B. (2007), "A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm", J. Global Optim., 39(3), 459-471. https://doi.org/10.1007/s10898-007-9149-x.
- Kaveh, A. and Ghazaan, M.I. (2018), "Optimal design of steel lattice transmission line towers", Meta-Heuristic Algorithms for Optimal Design of Real-Size Structures, Springer, Cham , 123-137.
- Klansek, U., Silih, S. and Kravanja, S. (2006), "Cost optimization of composite floor trusses", Steel Compos. Struct., 6(5), 435-457. https://doi.org/10.12989/scs.2016.22.5.1163.
- Lee, D. K., Kim, J. H., Starossek, U., & Shin, S. M. (2012), "Evaluation of structural outrigger belt truss layouts for tall buildings by using topology optimization", Struct. Eng. Mech., 43(6), 711-724. https://doi.org/10.12989/sem.2012.43.6.711.
- Mathakari, S., Gardoni, P., Agarwal, P., Raich, A. and Haukaas, T. (2007), "Reliability-based optimal design of electrical transmission towers using multi-objective genetic algorithms", Computer-Aided Civil Infrastructure Eng., 22(4), 282-292. https://doi.org/10.1111/j.1467-8667.2007.00485.x.
- Meng, K., Dong, Z. Y., Wang, D. H. and Wong, K.P. (2010), "A self-adaptive RBF neural network classifier for transformer fault analysis", IEEE T. Power Syst., 25(3), 10.1109/TPWRS.2010.2040491.
- Natarajan, K. and Santhakumar, A.R. (1995), "Reliability-based optimization of transmission line towers", Comput. Struct., 55(3), 387-403. https://doi.org/10.1016/0045-7949(95)98866-O.
- Noilublao, N. and Bureerat, S. (2011), "Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms", Comput. Struct., 89(23-24), 2531-2538. https://doi.org/10.1016/j.compstruc.2011.08.010.
- Paris, J., Martinez, S., Navarrina, F., Colominas, I. and Casteleiro, M. (2010), "Structural optimization of high tension towers", In Proceedings of the 2nd International Conference on Engineering Optimization, Lisbon, Portugal, September.
- Poggio, T. and Girosi, F. (1990), "Networks for approximation and learning", Proceedings of the IEEE, 78(9), 1481-1497. https://doi.org/10.1109/5.58326
- Qu, W. L., Chen, W. and Xiao, Y. Q. (2003), "A two-step approach for joint damage diagnosis of framed structures using artificial neural networks", Struct. Eng. Mech., 16(5), 581-595. https://doi.org/10.12989/sem.2003.16.5.581.
- Rao, G.V. (1995), "Optimum designs for transmission line towers", Comput. Struct., 57(1), 81-92. https://doi.org/10.1016/0045-7949(94)00597-V.
- Saxena, S. and Pathak, K.K. (2015), "Application of artificial neural networks for fully stressed design of Pratt and Howe Truss", New Technologies Sci. Eng., 2, 94-103.
- Schilling, R.J., Carroll, J.J. and Al-Ajlouni, A.F. (2001), "Approximation of nonlinear systems with radial basis function neural networks", IEEE T. Neur. Net., 12(1), 10.1109/72.896792.
- Shea, K. and Smith, I.F. (2006), "Improving full-scale transmission tower design through topology and shape optimization", J. Struct. Eng., 132(5), 781-790. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:5(781).
- Sheppard, D.J. and Palmer, A.C. (1972), "Optimal design of transmission towers by dynamic programming", Comput. Struct., 2(4), 455-468. https://doi.org/10.1016/0045-7949(72)90001-6.
- Sivakumar, P., Rajaraman, A., Samuel Knight, G.M. and Ramachandramurthy, D.S. (2004), "Object-oriented optimization approach using genetic algorithms for lattice towers", J. Comp. civil. Eng., 18(2), 162-171. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(162).
- Sonmez, M. (2011), "Discrete optimum design of truss structures using artificial bee colony algorithm", Struct. Multidiscip. O., 43(1), 85-97. https://doi.org/10.1007/s00158-010-0551-5.
- Souza, R.R. Miguel, L.F.F, Lopez, R.H.(2014), "On the size and shape optimization of transmission line towers", Proceedings of Pan-American Congress of Applied Mechanics, Santiago, Chile, 24-28 March.
- Souza, R. R., Miguel, L. F. F., Lopez, R. H., Miguel, L. F. F and Torii, A. J. (2016), "A procedure for the size, shape and topology optimization of transmission line tower structures", Eng. Struct., 111, 162-184. https://doi.org/10.1016/j.engstruct.2015.12.005.
- Tang, C. W. (2006), "Using radial basis function neural networks to model torsional strength of reinforced concrete beams", Comput. Concrete, 3(5), 335-355. http://dx.doi.org/10.12989/cac.2006.3.5.335
- Taniwaki, K. and Ohkubo, S. (2004), "Optimal synthesis method for transmission tower truss structures subjected to static and seismic loads", Struct. Multidiscip. O., 26(6), 441-454. https://doi.org/10.1007/s00158-003-0367-7.
- Tort, C., Sahin, S. and Hasancebi, O. (2017), "Optimum design of steel lattice transmission line towers using simulated annealing and PLS-TOWER", Comput. Struct., 179, 75-94. https://doi.org/10.1016/j.compstruc.2016.10.017.
- Tan, Z. X., Thambiratnam, D. P., Chan, T. H. T. and Razak, H. A. (2017), "Detecting damage in steel beams using modal strain energy based damage index and artificial neural network", Eng. Fail. Anal., 79, 253-262. https://doi.org/10.1016/j.engfailanal.2017.04.035.
- Yi, T. H., Li, H. N. and Gu, M. (2011), "Optimal sensor placement for structural health monitoring based on multiple optimization strategies", The Structural Design of Tall and Special Buildings, 20(7), 881-900. https://doi.org/10.1002/tal.712.
- Yi, T. H., Li, H. N. and Sun, H. M. (2013), "Multi-stage structural damage diagnosis method based on", Smart Struct. Syst., 12(3_4), 345-361.https://doi.org/10.12989/sss.2013.12.3_4.345.
- Yi, T. H., Li, H. N. and Zhang, X. D. (2012), "A modified monkey algorithm for optimal sensor placement in structural health monitoring", Smart Mater. Struct., 21(10), 105033. https://doi.org/10.1088/0964-1726/21/10/105033
- Yi, T. H., Zhou, G.D., Li, H. N. and Wang, C.W. (2017), "Optimal placement of triaxial sensors for modal identification using hierarchic wolf algorithm". Structural Control and Health Monitoring, 24(8), e1958. https://doi.org/10.1002/stc.1958.
Cited by
- Optimization of structural and mechanical engineering problems using the enriched ViS-BLAST method vol.77, pp.5, 2020, https://doi.org/10.12989/sem.2021.77.5.613