참고문헌
- ACI Commettee 318 (2011), Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, Farmington Hills, MI, USA.
- ACI-ASCE Committee 445 (1998), "ACI 445R-99. Recent approaches to shear design of structural" concrete, J Struct Eng, 124(12), 1375-1417. http://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1375).
- Bach, F., Braestrup, M.W. and Nielsen, M.P. (1978), "Rational analysis of shear in reinforced concrete beams.", I.A.B.S.E. proceedings, p. 15. http://doi.org/10.5169/seals-33219.
- Cladera, A. and Mari, A.R. (2007), "Shear strength in the new Eurocode 2. A step forward?", Structural Concrete, 8(2), 57-66. http://doi.org/10.1680/stco.2007.8.2.57.
- Collins, M., Bentz, E. and Sherwood, E. (2008), "Where is shear reinforcement required? Review of research results and design procedures", ACI Struct J, 105(5), 590-600.
- CEB-FIP '90 (1993), Model Code for Concrete Structures for Buildings, Comite Eurointernational du Beton, Lausanne, Switzerland.
- De Domenico, D., Fuschi, P., Pardo, S. and Pisano, A.A. (2014), "Strengthening of steel-reinforced concrete structural elements by externally bonded FRP sheets and evaluation of their load carrying capacity", Compos. Struct., 118(1), 377-338. https://doi.org/10.1016/j.compstruct.2014.07.040.
- De Domenico, D., Faleschini, F., Pellegrino, C. and Ricciardi, G. (2018), "Structural behavior of RC beams containing EAF slag as recycled aggregate: Numerical versus experimental results", Constr. Build. Mater., 171, 321-337. https://doi.org/10.1016/j.conbuildmat.2018.03.128.
- De Domenico, D. and Ricciardi, G. (2019), "Shear strength of RC beams with stirrups using an improved Eurocode 2 truss model with two variable-inclination compression struts", Eng. Struct., 198, 109359. https://doi.org/10.1016/j.engstruct.2019.109359.
- DIN 1045-1 (2008), Tragwerke aus Beton, Stahlbeton und Spannbeton (in German), Normenauschuss Bauwesen (NABau) im DIN, Berlin, Germany.
- EC2 (2005), Eurocode No. 2. Design of Concrete Structures - Part. 1-1: General Rules and Rules for Buildings, UNI EN 1992-1-1, 2005, European committee for standardisation, Brussels, Belgium.
- ENV 1992-1-1 (1991), Eurocode 2 - Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings, European committee for standardisation, Brussels, Belgium.
- Federation Internationale du Beton (2013), fib Model Code for Concrete Structures 2010, International Federation for Structural Concrete (fib), Ernst & Sohn, 2013, Lausanne, Switzerland.
- Fuschi, P., Pisano, A.A. and Weichert, D. (Eds.) (2015), Direct Methods for Limit and Shakedown Analysis of Structures. Springer, Berlin, Germany. http://doi.org/10.1007/978-3-319-12928-0.
- Grandic, D., Sculac, P. and Grandic, I.S. (2015), "Shear resistance of reinforced concrete beams in dependence on concrete strength in compressive struts", Technical Gazette, 22(4), 925-934. http://doi.org/10.17559/TV-20140708125658.
- He, Z.Q., Liu, Z. and John, Ma.Z. (2015), "Simplified shear design of slender reinforced concrete beams with stirrups", J Struct Eng, 142(2), 06015003. http://doi.org/10.1061/(ASCE)ST.1943-541X.0001394.
- Hsu, T.T.C. (1988), "Softened truss model theory for shear and torsion", ACI Struct. J., 85(6), 624-635.
- Kaufmann, W. and Marti, P. (1998), "Structural concrete: cracked membrane model", J Struct Eng, 124(12), 1467-1475. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1467).
- Keskin, R.S. (2017), "Predicting shear strength of SFRC slender beams without stirrups using an ANN model", Struct. Eng. Mech., 61(5), 605-615. http://dx.doi.org/10.12989/sem.2017.61.5.605.
- Le, C.V., Gilbert, M. and Askes, H. (2010), "Limit analysis of plates and slabs using a meshless equilibrium formulation", Int. J. Numer. Meth. Eng., 83(13), 1739-1758. https://doi.org/10.1002/nme.2887.
- Le, C.V., Nguyen, P.H., Askes, H. and Pham, D.C. (2017), "A computational homogenization approach for limit analysis of heterogeneous materials", Int. J. Numer. Meth. Eng., 112(10), 1381-1401. https://doi.org/10.1002/nme.5561.
- Lee, J.Y., Choi, I.J. and Kim, S.W. (2011), "Shear behavior of reinforced concrete beams with high-strength stirrups", ACI Struct. J., 108(5), 620-629.
- Lee, J.Y. and Hwang, H.B. (2010), "Maximum shear reinforcement of reinforced concrete beams", ACI Struct. J., 107(5), 580-588.
- Leonhardt, F. (1973), Vorlesungen uber Massivbau - Erster Teil, Springer-Verlag GmbH, Berlin, Germany.
- Li, B. and Tran, C.T.N. (2012), "Determination of inclination of strut and shear strength using variable angle truss model for shear-critical RC beams", Struct. Eng. Mech., 41(4), 459-477. http://dx.doi.org/10.12989/sem.2012.41.4.459.
- Limam, O., Foret, G. and Ehrlacher, A. (2003a), "RC beams strengthened with composite material: a limit analysis approach and experimental study", Compos. Struct., 59, 467-472. https://doi.org/10.1016/S0263-8223(02)00286-6.
- Limam, O., Foret, G. and Ehrlacher, A. (2003b), "RC two-way slabs strengthened with CFRP strips: experimental study and a limit analysis approach", Compos. Struct., 60(4), 467-471. https://doi.org/10.1016/S0263-8223(03)00011-4.
- Londhe, R.S. (2009), "The design of reinforced concrete beams for shear in current practice: A new analytical model", Struct. Eng. Mech., 31(2), 225-235. http://dx.doi.org/10.12989/sem.2009.31.2.225.
- Mansour, M.Y., Dicleli, M., Lee, J.Y. and Zhang, J. (2004), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Eng Struct, 26(6), 781-799. https://doi.org/10.1016/j.engstruct.2004.01.011.
- Marti, P. (1985), "Basic tools of reinforced concrete beam design", ACI Struct J, 82(1), 46-56.
- Menetrey, P. and Willam, K.J. (1995) "A triaxial failure criterion for concrete and its generalization", ACI Struct. J., 92, 311-318.
- Morsch, E. (1908), Der Eisenbetonbau. Seine Theorie und Anwendung, Stuttgart: Wittwer, Germany.
- Nielsen, M.P., Hoang, L. (1999), Limit analysis and concrete plasticity, 2nd ed., CRC, Florida, USA.
-
NTC18 (2018), D.M. LL. PP. 17 Gennaio 2018. Aggiornamento delle
, (in Italian), Ministero delle Infrastrutture e dei Traporti, Rome, Italy. - Olalusi, O.B. (2019), "Present State of Eurocode 2 Variable Strut Inclination Method for Shear Design and Possible Improvement", Structures, 19, 48-57. https://doi.org/10.1016/j.istruc.2018.11.016.
- Park, M.K., Lee, D.H., Ju, H., Hwang, J.H., Choi, S.H. and Kim, K.S. (2015). "Minimum shear reinforcement ratio of prestressed concrete members for safe design", Struct. Eng. Mech., 56(2), 317-340. http://dx.doi.org/10.12989/sem.2015.56.2.317.
- Park, R. and Paulay, T. (1975), Reinforced Concrete Structures, John Wiley and Sons, New York, USA.
- Pisano, A.A., Fuschi, P. and De Domenico, D. (2013), "A kinematic approach for peak load evaluation of concrete elements", Comput. Struct., 119, 125-139. https://doi.org/10.1016/j.compstruc.2012.12.030.
- Pisano, A.A., Fuschi, P. and De Domenico, D. (2015), "Numerical limit analysis of steel-reinforced concrete walls and slabs", Comput. Struct., 160, 42-55. https://doi.org/10.1016/j.compstruc.2015.08.004.
- Qissab, M. and Salman, M.M. (2018), "Shear strength of non-prismatic steel fiber reinforced concrete beams without stirrups", Struct. Eng. Mech., 67, 347-358. http://dx.doi.org/10.12989/sem.2018.67.4.347.
- Regan, P.E. (1969), "Shear in reinforced concrete beams", Magazine of Concrete Research, 21(66), 31-42. https://doi.org/10.1680/macr.1969.21.66.31.
- Reineck, K.H., Bentz, E., Fitik, B., Kuchma, D.A. and Bayrak, O. (2014), "ACI-DAfStb Databases for Shear Tests on Slender Reinforced Concrete Beams with Stirrups", ACI Struct J, 111(5), 1147-1156. https://doi.org/10.14359/51686819
- Reineck, K.H. and Dunkelberg, D. (2017), ACI-DAfStb databases 2015 on shear tests for evaluating relationships for the shear design of structural concrete members without and with stirrups, Report for Research Project DAfStb V479. Reineck K-H, Dunkelberg, D. (Eds.). Beuth Verl. Berlin, Germany.
- Ritter, W. (1989), "Die Bauweise Hennebique", Schweizerische Bauzeitung, 33(7), 59-66.
- Russo, G., Mitri, D. and Pauletta, M. (2013), "Shear strength design formula for RC beams with stirrups", Eng. Struct., 51: 226-235. https://doi.org/10.1016/j.engstruct.2013.01.024.
- Russo, G. and Puleri, G. (1997), "Stirrup effectiveness in reinforced concrete beams under flexure and shear", ACI Struct. J., 94(3), 451-476.
- Sigrist, V. (2011), "Generalized Stress Field Approach for Analysis of Beams in Shear", ACI Struct. J., 108(4), 497-487.
- Sigrist, V., Bentz, E., Fernandez-Ruiz, M., Foster, S. and Muttoni, A. (2013), "Background to the fib Model Code 2010 shear provisions-part I: beams and slabs", Struct. Concr., 14(3), 195-203. https://doi.org/10.1002/suco.201200066.
- Spiliopoulos, K. and Weichert, D. (Eds.) (2014), Direct Methods for Limit States in Structures and Materials, Springer, Berlin, Germany. https://doi.org/10.1007/978-94-007-6827-7.
- Thurlimann, B. (1978), "Shear strength of reinforced and prestressed concrete", CEB Bull Inf, 126, 16-38.
- Vecchio, F.J. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI Struct. J., 83(2), 219-231.
- Walraven, J., Belletti, B. and Esposito, R. (2013), "Shear capacity of normal, lightweight, and high-strength concrete beams according to Model Code 2010. I: Experimental results versus analytical model results", J. Struct. Eng., 139(9): 1593-1599. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000742.
- Wang, Q., Guo, Z. and Hoogenboom, P.C. (2005), "Experimental investigation on the shear capacity of RC dapped end beams and design recommendations", Struct. Eng. Mech., 21(2), 221-235. http://dx.doi.org/10.12989/sem.2005.21.2.221.
- Yavuz, G. (2016), "Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches", Struct. Eng. Mech., 57(4), 657-680. http://dx.doi.org/10.12989/sem.2016.57.4.657.
- Zhang, T., Visintin, P. and Oehlers, D.J. (2015), "Shear strength of RC beams with steel stirrups", J Struct Eng, 142(2), 04015135. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001404.
피인용 문헌
- Flexural performance test of a prestressed concrete beam with plastic bellows vol.79, pp.2, 2021, https://doi.org/10.12989/sem.2021.79.2.223