DOI QR코드

DOI QR Code

A stress field approach for the shear capacity of RC beams with stirrups

  • 투고 : 2019.06.22
  • 심사 : 2019.10.19
  • 발행 : 2020.03.10

초록

This paper presents a stress field approach for the shear capacity of stirrup-reinforced concrete beams that explicitly incorporates the contribution of principal tensile stresses in concrete. This formulation represents an extension of the variable strut inclination method adopted in the Eurocode 2. In this model, the stress fields in web concrete consist of principal compressive stresses inclined at an angle θ combined with principal tensile stresses oriented along a direction orthogonal to the former (the latter being typically neglected in other formulations). Three different failure mechanisms are identified, from which the strut inclination angle and the corresponding shear strength are determined through equilibrium principles and the static theorem of limit analysis, similar to the EC-2 approach. It is demonstrated that incorporating the contribution of principal tensile stresses of concrete slightly increases the ultimate inclination angle of the compression struts as well as the shear capacity of reinforced concrete beams. The proposed stress field approach improves the prediction of the shear strength in comparison with the Eurocode 2 model, in terms of both accuracy (mean) and precision (CoV), as demonstrated by a broad comparison with more than 200 published experimental results from the literature.

키워드

참고문헌

  1. ACI Commettee 318 (2011), Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, Farmington Hills, MI, USA.
  2. ACI-ASCE Committee 445 (1998), "ACI 445R-99. Recent approaches to shear design of structural" concrete, J Struct Eng, 124(12), 1375-1417. http://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1375).
  3. Bach, F., Braestrup, M.W. and Nielsen, M.P. (1978), "Rational analysis of shear in reinforced concrete beams.", I.A.B.S.E. proceedings, p. 15. http://doi.org/10.5169/seals-33219.
  4. Cladera, A. and Mari, A.R. (2007), "Shear strength in the new Eurocode 2. A step forward?", Structural Concrete, 8(2), 57-66. http://doi.org/10.1680/stco.2007.8.2.57.
  5. Collins, M., Bentz, E. and Sherwood, E. (2008), "Where is shear reinforcement required? Review of research results and design procedures", ACI Struct J, 105(5), 590-600.
  6. CEB-FIP '90 (1993), Model Code for Concrete Structures for Buildings, Comite Eurointernational du Beton, Lausanne, Switzerland.
  7. De Domenico, D., Fuschi, P., Pardo, S. and Pisano, A.A. (2014), "Strengthening of steel-reinforced concrete structural elements by externally bonded FRP sheets and evaluation of their load carrying capacity", Compos. Struct., 118(1), 377-338. https://doi.org/10.1016/j.compstruct.2014.07.040.
  8. De Domenico, D., Faleschini, F., Pellegrino, C. and Ricciardi, G. (2018), "Structural behavior of RC beams containing EAF slag as recycled aggregate: Numerical versus experimental results", Constr. Build. Mater., 171, 321-337. https://doi.org/10.1016/j.conbuildmat.2018.03.128.
  9. De Domenico, D. and Ricciardi, G. (2019), "Shear strength of RC beams with stirrups using an improved Eurocode 2 truss model with two variable-inclination compression struts", Eng. Struct., 198, 109359. https://doi.org/10.1016/j.engstruct.2019.109359.
  10. DIN 1045-1 (2008), Tragwerke aus Beton, Stahlbeton und Spannbeton (in German), Normenauschuss Bauwesen (NABau) im DIN, Berlin, Germany.
  11. EC2 (2005), Eurocode No. 2. Design of Concrete Structures - Part. 1-1: General Rules and Rules for Buildings, UNI EN 1992-1-1, 2005, European committee for standardisation, Brussels, Belgium.
  12. ENV 1992-1-1 (1991), Eurocode 2 - Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings, European committee for standardisation, Brussels, Belgium.
  13. Federation Internationale du Beton (2013), fib Model Code for Concrete Structures 2010, International Federation for Structural Concrete (fib), Ernst & Sohn, 2013, Lausanne, Switzerland.
  14. Fuschi, P., Pisano, A.A. and Weichert, D. (Eds.) (2015), Direct Methods for Limit and Shakedown Analysis of Structures. Springer, Berlin, Germany. http://doi.org/10.1007/978-3-319-12928-0.
  15. Grandic, D., Sculac, P. and Grandic, I.S. (2015), "Shear resistance of reinforced concrete beams in dependence on concrete strength in compressive struts", Technical Gazette, 22(4), 925-934. http://doi.org/10.17559/TV-20140708125658.
  16. He, Z.Q., Liu, Z. and John, Ma.Z. (2015), "Simplified shear design of slender reinforced concrete beams with stirrups", J Struct Eng, 142(2), 06015003. http://doi.org/10.1061/(ASCE)ST.1943-541X.0001394.
  17. Hsu, T.T.C. (1988), "Softened truss model theory for shear and torsion", ACI Struct. J., 85(6), 624-635.
  18. Kaufmann, W. and Marti, P. (1998), "Structural concrete: cracked membrane model", J Struct Eng, 124(12), 1467-1475. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1467).
  19. Keskin, R.S. (2017), "Predicting shear strength of SFRC slender beams without stirrups using an ANN model", Struct. Eng. Mech., 61(5), 605-615. http://dx.doi.org/10.12989/sem.2017.61.5.605.
  20. Le, C.V., Gilbert, M. and Askes, H. (2010), "Limit analysis of plates and slabs using a meshless equilibrium formulation", Int. J. Numer. Meth. Eng., 83(13), 1739-1758. https://doi.org/10.1002/nme.2887.
  21. Le, C.V., Nguyen, P.H., Askes, H. and Pham, D.C. (2017), "A computational homogenization approach for limit analysis of heterogeneous materials", Int. J. Numer. Meth. Eng., 112(10), 1381-1401. https://doi.org/10.1002/nme.5561.
  22. Lee, J.Y., Choi, I.J. and Kim, S.W. (2011), "Shear behavior of reinforced concrete beams with high-strength stirrups", ACI Struct. J., 108(5), 620-629.
  23. Lee, J.Y. and Hwang, H.B. (2010), "Maximum shear reinforcement of reinforced concrete beams", ACI Struct. J., 107(5), 580-588.
  24. Leonhardt, F. (1973), Vorlesungen uber Massivbau - Erster Teil, Springer-Verlag GmbH, Berlin, Germany.
  25. Li, B. and Tran, C.T.N. (2012), "Determination of inclination of strut and shear strength using variable angle truss model for shear-critical RC beams", Struct. Eng. Mech., 41(4), 459-477. http://dx.doi.org/10.12989/sem.2012.41.4.459.
  26. Limam, O., Foret, G. and Ehrlacher, A. (2003a), "RC beams strengthened with composite material: a limit analysis approach and experimental study", Compos. Struct., 59, 467-472. https://doi.org/10.1016/S0263-8223(02)00286-6.
  27. Limam, O., Foret, G. and Ehrlacher, A. (2003b), "RC two-way slabs strengthened with CFRP strips: experimental study and a limit analysis approach", Compos. Struct., 60(4), 467-471. https://doi.org/10.1016/S0263-8223(03)00011-4.
  28. Londhe, R.S. (2009), "The design of reinforced concrete beams for shear in current practice: A new analytical model", Struct. Eng. Mech., 31(2), 225-235. http://dx.doi.org/10.12989/sem.2009.31.2.225.
  29. Mansour, M.Y., Dicleli, M., Lee, J.Y. and Zhang, J. (2004), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Eng Struct, 26(6), 781-799. https://doi.org/10.1016/j.engstruct.2004.01.011.
  30. Marti, P. (1985), "Basic tools of reinforced concrete beam design", ACI Struct J, 82(1), 46-56.
  31. Menetrey, P. and Willam, K.J. (1995) "A triaxial failure criterion for concrete and its generalization", ACI Struct. J., 92, 311-318.
  32. Morsch, E. (1908), Der Eisenbetonbau. Seine Theorie und Anwendung, Stuttgart: Wittwer, Germany.
  33. Nielsen, M.P., Hoang, L. (1999), Limit analysis and concrete plasticity, 2nd ed., CRC, Florida, USA.
  34. NTC18 (2018), D.M. LL. PP. 17 Gennaio 2018. Aggiornamento delle , (in Italian), Ministero delle Infrastrutture e dei Traporti, Rome, Italy.
  35. Olalusi, O.B. (2019), "Present State of Eurocode 2 Variable Strut Inclination Method for Shear Design and Possible Improvement", Structures, 19, 48-57. https://doi.org/10.1016/j.istruc.2018.11.016.
  36. Park, M.K., Lee, D.H., Ju, H., Hwang, J.H., Choi, S.H. and Kim, K.S. (2015). "Minimum shear reinforcement ratio of prestressed concrete members for safe design", Struct. Eng. Mech., 56(2), 317-340. http://dx.doi.org/10.12989/sem.2015.56.2.317.
  37. Park, R. and Paulay, T. (1975), Reinforced Concrete Structures, John Wiley and Sons, New York, USA.
  38. Pisano, A.A., Fuschi, P. and De Domenico, D. (2013), "A kinematic approach for peak load evaluation of concrete elements", Comput. Struct., 119, 125-139. https://doi.org/10.1016/j.compstruc.2012.12.030.
  39. Pisano, A.A., Fuschi, P. and De Domenico, D. (2015), "Numerical limit analysis of steel-reinforced concrete walls and slabs", Comput. Struct., 160, 42-55. https://doi.org/10.1016/j.compstruc.2015.08.004.
  40. Qissab, M. and Salman, M.M. (2018), "Shear strength of non-prismatic steel fiber reinforced concrete beams without stirrups", Struct. Eng. Mech., 67, 347-358. http://dx.doi.org/10.12989/sem.2018.67.4.347.
  41. Regan, P.E. (1969), "Shear in reinforced concrete beams", Magazine of Concrete Research, 21(66), 31-42. https://doi.org/10.1680/macr.1969.21.66.31.
  42. Reineck, K.H., Bentz, E., Fitik, B., Kuchma, D.A. and Bayrak, O. (2014), "ACI-DAfStb Databases for Shear Tests on Slender Reinforced Concrete Beams with Stirrups", ACI Struct J, 111(5), 1147-1156. https://doi.org/10.14359/51686819
  43. Reineck, K.H. and Dunkelberg, D. (2017), ACI-DAfStb databases 2015 on shear tests for evaluating relationships for the shear design of structural concrete members without and with stirrups, Report for Research Project DAfStb V479. Reineck K-H, Dunkelberg, D. (Eds.). Beuth Verl. Berlin, Germany.
  44. Ritter, W. (1989), "Die Bauweise Hennebique", Schweizerische Bauzeitung, 33(7), 59-66.
  45. Russo, G., Mitri, D. and Pauletta, M. (2013), "Shear strength design formula for RC beams with stirrups", Eng. Struct., 51: 226-235. https://doi.org/10.1016/j.engstruct.2013.01.024.
  46. Russo, G. and Puleri, G. (1997), "Stirrup effectiveness in reinforced concrete beams under flexure and shear", ACI Struct. J., 94(3), 451-476.
  47. Sigrist, V. (2011), "Generalized Stress Field Approach for Analysis of Beams in Shear", ACI Struct. J., 108(4), 497-487.
  48. Sigrist, V., Bentz, E., Fernandez-Ruiz, M., Foster, S. and Muttoni, A. (2013), "Background to the fib Model Code 2010 shear provisions-part I: beams and slabs", Struct. Concr., 14(3), 195-203. https://doi.org/10.1002/suco.201200066.
  49. Spiliopoulos, K. and Weichert, D. (Eds.) (2014), Direct Methods for Limit States in Structures and Materials, Springer, Berlin, Germany. https://doi.org/10.1007/978-94-007-6827-7.
  50. Thurlimann, B. (1978), "Shear strength of reinforced and prestressed concrete", CEB Bull Inf, 126, 16-38.
  51. Vecchio, F.J. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI Struct. J., 83(2), 219-231.
  52. Walraven, J., Belletti, B. and Esposito, R. (2013), "Shear capacity of normal, lightweight, and high-strength concrete beams according to Model Code 2010. I: Experimental results versus analytical model results", J. Struct. Eng., 139(9): 1593-1599. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000742.
  53. Wang, Q., Guo, Z. and Hoogenboom, P.C. (2005), "Experimental investigation on the shear capacity of RC dapped end beams and design recommendations", Struct. Eng. Mech., 21(2), 221-235. http://dx.doi.org/10.12989/sem.2005.21.2.221.
  54. Yavuz, G. (2016), "Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches", Struct. Eng. Mech., 57(4), 657-680. http://dx.doi.org/10.12989/sem.2016.57.4.657.
  55. Zhang, T., Visintin, P. and Oehlers, D.J. (2015), "Shear strength of RC beams with steel stirrups", J Struct Eng, 142(2), 04015135. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001404.

피인용 문헌

  1. Flexural performance test of a prestressed concrete beam with plastic bellows vol.79, pp.2, 2021, https://doi.org/10.12989/sem.2021.79.2.223