DOI QR코드

DOI QR Code

Suppression of Dielectric Loss at High Temperature in (Bi1/2Na1/2)TiO3 Ceramic by Controlling A-site Cation Deficiency and Heat Treatment

  • Lee, Ju-Hyeon (School of Materials Science and Engineering & Julich-UNIST Joint Leading Institute for Advanced Energy Research, Ulsan National Institute of Science and Technology) ;
  • Lee, Geon-Ju (School of Materials Science and Engineering & Julich-UNIST Joint Leading Institute for Advanced Energy Research, Ulsan National Institute of Science and Technology) ;
  • Pham, Thuy-Linh (School of Materials Science and Engineering, Chonnam National University) ;
  • Lee, Jong-Sook (School of Materials Science and Engineering, Chonnam National University) ;
  • Jo, Wook (School of Materials Science and Engineering & Julich-UNIST Joint Leading Institute for Advanced Energy Research, Ulsan National Institute of Science and Technology)
  • Received : 2020.01.14
  • Accepted : 2020.01.30
  • Published : 2020.01.31

Abstract

Dielectric capacitors are integral components in electronic devices that protect the electric circuit by providing modulated steady voltage. Explosive growth of the electric automobile market has resulted in an increasing demand for dielectric capacitors that can operate at temperatures as high as 400 ℃. To surpass the operation temperature limit of currently available commercial capacitors that operate in temperatures up to 125 ℃, Bi1/2Na1/2TiO3 (BNT), which has a large temperature-insensitive dielectric response with a maximum dielectric permittivity temperature of 300 ℃, was selected. By introducing an intentional A-site cation deficiency and post-heat treatment, we successfully manage to control the dielectric properties of BNT to use it for high-temperature applications. The key feature of this new BNT is remarkable reduction in dielectric loss (0.36 to 0.018) at high temperature (300 ℃). Structural, dielectric, and electrical properties of this newly developed BNT were systematically investigated to understand the underlying mechanism.

Keywords

References

  1. R. U. A. Shaikh, A. Saeed and R. Kumar, "Review on present and future integration techniques for capacitors in motor drives", Conf. Proc. - iCoMET, pp. 1-8, Sukkur, 2018.
  2. R. L. Greenwell, B. M. McCue, L. Zuo, M. A. Huque, L. M. Tolbert, B. J. Blalock, and S. K. Islam, "SOI-based integrated circuits for high-temperature power electronics applications", Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 836-843, Fort Worth, USA, 2011.
  3. C. Buttay, D. Planson, B. Allard, D. Bergogne, P Bevilacqua, C. Joubert, and C. Raynaud, "State of the art of high temperature power electronics", Mater. Sci. Eng. B, Vol. 176, No. 4, pp. 283-288, 2011. https://doi.org/10.1016/j.mseb.2010.10.003
  4. M. R. Kim, S. J. Yoon, and J. W. Choi. "Dielectric and piezoelectric properties of $0.96(Na_{0.5}K_{0.5})NbO_{3}-0.04(Ba_{(1-x)}Sr_{x})TiO_{3}$ lead-free ceramics", J. Kor. Sensors Soc., Vol. 19, No. 2, pp. 155-159, 2010.
  5. R. Dittmer, W. Jo, D. Damjanovic, and J. Rodel, "Lead-free high-temperature dielectrics with wide operational range", J. Appl. Phys, Vol. 109, No. 3, pp. 034107, 2011. https://doi.org/10.1063/1.3544481
  6. J.-B. Lim, S. Zhang, N. Kim, and T. Shrout, "High-Temperature Dielectrics in the $BiScO_{3}-BaTiO_{3}-(K_{1/2}Bi_{1/2})TiO_{3}$ Ternary System", J. Am. Ceram. Soc., Vol. 92, No. 25448, pp. 679-682, 2009. https://doi.org/10.1111/j.1551-2916.2009.02973.x
  7. R. Dittmer, E. M. Anton, W. Jo, H. Simons, J. E. Daniels, M. Hoffman, and J. Rodel, "A high-temperature-capacitor dielectric based on $K_{0.5}Na_{0.5}NbO_{3}$-Modified $Bi_{1/2}Na_{1/2}TiO_{3}-Bi_{1/2}K_{1/2}TiO_{3}$", J. Am. Ceram. Soc., Vol. 95, No. 11, pp. 3519-3524, 2012. https://doi.org/10.1111/j.1551-2916.2012.05321.x
  8. C. S. Tu, I. G. Siny, and V. H. Schmidt, "Sequence of dielectric anomalies and high-temperature relaxation behavior in $Na_{1/2}Bi_{1/2}TiO_{3}$", Phys. Rev. B, Vol. 49, No. 17, pp. 11550-11559, 1994. https://doi.org/10.1103/physrevb.49.11550
  9. C. H. Hong, Z. Fan, X, Tan, W. S. Kang, C. W. Ahn, Y. Shin, and W. Jo, "Role of sodium deficiency on the relaxor properties of $Bi_{1/2}Na_{1/2}TiO_{3}-BaTiO_{3}$", J. Eur. Ceram. Soc., Vol. 38, No. 16, pp. 5375-5381, 2018. https://doi.org/10.1016/j.jeurceramsoc.2018.08.006
  10. W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic, and J. Rodel, "Evolving morphotropic phase boundary in lead-free $(Bi_{1/2}Na_{1/2})TiO_{3}-BaTiO_{3}$ piezoceramics", J. Appl. Phys., Vol. 109, No. 1, pp. 014110, 2011. https://doi.org/10.1063/1.3530737
  11. M. Li, H. Zhang, S. N. Cook, L. Li, J. A. Kilner, I. . Reaney, and D. C. Sinclair, "Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide $Na_{0.5}Bi_{0.5}TiO_{3}$", Chem. Mater., Vol. 27, No. 2, pp. 629-634, 2015. https://doi.org/10.1021/cm504475k
  12. H. S. Han, W. Jo, J. Rodel, I. K. Hong, W. P. Tai, and J. S. Lee, "Coexistence of ergodicity and nonergodicity in $LaFeO_{3}$ - modified $Bi_{1/2}(Na_{0.78}K_{0.22})_{1/2}TiO_{3}$ relaxors", J. Phys. C, Vol. 24, No. 36, pp.365901(1)-365901(6), 2012.
  13. M. Li, M. J. Pietrowski, R. A. De Souza, H. Zhang, and I. M. Reaney, "A family of oxide ion conductors based on the ferroelectric perovskite", Nat. Mater., Vol. 13, No. 1, pp. 31-35, 2014. https://doi.org/10.1038/nmat3782
  14. C. C. Wang, C. M. Lei, G. J. Wang, X. H. Sun, T. Li, S. G. Huang, and Y. D. Li, "Oxygen-vacancy-related dielectric relaxations in $SrTiO_{3}$ at high temperatures", J. Appl. Phys., Vol. 113, No. 9, pp. 094103(1)-094103(10), 2013. https://doi.org/10.1063/1.4794349
  15. K. C. Meyer and K. Albe, "Influence of phase transitions and defect associates on the oxygen migration in the ion conductor $Na_{1/2}Bi_{1/2}TiO_{3}$", J. Mater. Chem. A, Vol. 5, No. 9, pp. 4368-4375, 2017. https://doi.org/10.1039/C6TA10566A
  16. L. Liu, C. Wang, X. Sun, G. Wang, C. Lei, and T. Li, "Oxygen-vacancy-related relaxations of $Sr_{3}CuNbO_{9}$ at high temperatures", J. Alloys Compd., Vol. 552, No. 49, pp. 279-282, 2013. https://doi.org/10.1016/j.jallcom.2012.10.081
  17. C. Ang, Z. Yu, and L. Cross, "Oxygen-vacancy-related lowfrequency dielectric relaxation and electrical conduction", Phys. Rev. B, Vol. 62, No. 1, pp. 228-236, 2000. https://doi.org/10.1103/physrevb.62.228
  18. Y. S. Sung, J. M. Kim, J. H. Cho, T. K. Song, M. H. Kim, H. H. Chong, and S. S. Kim, "Effects of Na nonstoichiometry in $(Bi_{0.5}Na_{0.5+x})TiO_{3}$ ceramics", Appl. Phys. Lett., Vol. 96, No. 2, pp. 022901(1)- 022901(3), 2010. https://doi.org/10.1063/1.3275704