• Title/Summary/Keyword: High-temperature dielectrics

Search Result 74, Processing Time 0.043 seconds

Electrical Breakdown and Flashover Characteristics of Gaseous Helium at Cryogenic Temperature (극저온 헬륨가스의 절연파괴 및 연면방전 특성)

  • Kwag, Dong-Soon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.38-42
    • /
    • 2012
  • Fixtures such as bushings in terminations of high temperature superconducting(HTS) power cable systems are subjected to high voltages, which have to transition from ambient to cryogenic temperatures. As such it is imperative to ensure the integrity of the dielectrics under all operating conditions, including thermal aspects brought about by the passage of current. Gaseous helium(GHe) at high pressure is regarded as a potential coolant for superconducting cables. The dielectric aspects of cryogenic helium gas are both complex and demanding. In this experimental study we looked at the interface between a smooth epoxy surface and high pressure helium gas in a homogeneous electric field. The alternating current(AC) flashover voltages of epoxy samples are presented. The results have been analyzed by using Weibull statistics. In addition to the behavior of the epoxy in gaseous helium as a function of pressure and temperature we also present data of the characteristics of the epoxy in mineral oil and in liquid nitrogen($LN_2$). The breakdown characteristics of a uniform field gap in gaseous helium as a function of pressure and temperature under AC, direct current(DC) and lightning impulse voltages are also given. Electric field calculations have been made for one of the experimental geometries in an attempt to explain some of the anomalies in the experimental results.

Synthesis of Forsterite with High Q and Near Zero TCf for Microwave/Millimeterwave Dielectrics

  • Ohsato, Hitoshi;Ando, Minato;Tsunooka, Tsutomu
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.597-606
    • /
    • 2007
  • With the advent of ubiquitous age, the high quality dielectric materials have been required for the wireless communications available to the millimeterwave as well as microwave frequencies. The utilizable region for the frequency has been expanding to the millimeter-wave region because of the shortage of radio frequency (RF) resources. These high frequencies would be expected for ultra high speed LAN, ETS and car anti-collision system on the intelligent transport system (ITS) and so on. Silicates are good candidates for microwave/millimeterwave dielectrics, because of their low dielectric constant ${\epsilon}_r$ and high quality factor (High Q). Forsterite ($Mg_2SiO_4$) is one of the silicates with low ${\epsilon}_r$ of 6.8 and Q f of 240000 GHz. In this paper, we reviewed following three categories for synthesis of forsterite: (1) Synthesis of high Q forsterite (2) Adjust the temperature coefficient of resonant frequency $TC_f$ (3) Diffusion of $SiO_{4^-}$ and Mg-ions on the formation of forsterite.

Electrical properties of oxide thin film transistor with $ZrO_2$ gate dielectrics ($ZrO_2$ 게이트 절연막을 이용한 산화물 박막 트랜지스터의 전기적 특성)

  • Debnath, Pulak Chandra;Lee, Jae-Sang;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1334_1335
    • /
    • 2009
  • In this paper we have presented recent studies concerning the high performance oxide thin film transistor (TFT) with a-IGZO channel and $ZrO_2$ gate dielectrics. The a-IGZO TFT is fully fabricated at room-temperature without any thermal treatments. The $ZrO_2$ is one of the most promising high-k materials with high capacitance originated from the high dielectric constant. The a-IGZO TFT with $ZrO_2$ shows high performance exhibiting high field effect mobility of $39.82\;cm^2$/Vs and high on-current of 2.52 mA at 10V.

  • PDF

Sr-doped AlOx gate dielectrics enabling high-performance flexible transparent thin film transistors by sol-gel process

  • Kim, Jaeyoung;Choi, Seungbeom;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.301.2-301.2
    • /
    • 2016
  • Metal-oxide thin-film transistors (TFTs) have gained a considerable interest in transparent electronics owing to their high optical transparency and outstanding electrical performance even in an amorphous state. Also, these metal-oxide materials can be solution-processed at a low temperature by using deep ultraviolet (DUV) induced photochemical activation allowing facile integration on flexible substrates [1]. In addition, high-dielectric constant (k) inorganic gate dielectrics are also of a great interest as a key element to lower the operating voltage and as well as the formation of coherent interface with the oxide semiconductors, which may lead to a considerable improvement in the TFT performance. In this study, we investigated the electrical properties of solution-processed high-k strontium-doped AlOx (Sr-AlOx) gate dielectrics. Using the Sr-AlOx as a gate dielectric, indium-gallium-zinc oxide (IGZO) TFTs were fabricated and their electrical properties are analyzed. We demonstrate IGZO TFTs with a 10-nm-thick Sr-AlOx gate dielectric which can be operated at a low voltage (~5 V).

  • PDF

The Dielectric Properties of BaTi $O_3$ by Additive Material (첨가제에 의한 BaTi $O_3$의 유전특성)

  • 홍경진;정우성;민용기;김태성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.413-416
    • /
    • 1996
  • The ceramic dielectrics were fabricated by mixing of Mn $O_2$ and ZnO at (B $a_{0.85}$ $Ca_{0.15}$)Ti $O_3$ and studied for dielectric relaxation characteristics. The dielectric relaxation time was increased by space charge polarization of palaelectric layer at the low temperature and frequency but it was decreased by Interface polarization at the high temperature and frequency. The remnant polarization and coercive field of ceramic dielectrics was decreased by rising temperature.ure.

  • PDF

Simple Route to High-performance and Solution-processed ZnO Thin Film Transistors Using Alkali Metal Doping

  • Kim, Yeon-Sang;Park, Si-Yun;Kim, Gyeong-Jun;Im, Geon-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.187-187
    • /
    • 2012
  • Solution-processed metal-alloy oxides such as indium zinc oxide (IZO), indium gallium zinc oxide (IGZO) has been extensively researched due to their high electron mobility, environmental stability, optical transparency, and solution-processibility. In spite of their excellent material properties, however, there remains a challenging problem for utilizing IZO or IGZO in electronic devices: the supply shortage of indium (In). The cost of indium is high, what is more, indium is becoming more expensive and scarce and thus strategically important. Therefore, developing an alternative route to improve carrier mobility of solution-processable ZnO is critical and essential. Here, we introduce a simple route to achieve high-performance and low-temperature solution-processed ZnO thin film transistors (TFTs) by employing alkali-metal doping such as Li, Na, K or Rb. Li-doped ZnO TFTs exhibited excellent device performance with a field-effect mobility of $7.3cm^2{\cdot}V-1{\cdot}s-1$ and an on/off current ratio of more than 107. Also, in case of higher drain voltage operation (VD=60V), the field effect mobility increased up to $11.45cm^2{\cdot}V-1{\cdot}s-1$. These all alkali metal doped ZnO TFTs were fabricated at maximum process temperature as low as $300^{\circ}C$. Moreover, low-voltage operating ZnO TFTs was fabricated with the ion gel gate dielectrics. The ultra high capacitance of the ion gel gate dielectrics allowed high on-current operation at low voltage. These devices also showed excellent operational stability.

  • PDF

Thermal Stability and Electrical Properties of $HfO_xN_y$ ($HfO_2$) Gate Dielectrics with TaN Gate Electrode (TaN 게이트 전극을 가진 $HfO_xN_y$ ($HfO_2$) 게이트 산화막의 열적 안정성)

  • Kim, Jeon-Ho;Choi, Kyu-Jeong;Yoon, Soon-Gil;Lee, Won-Jae;Kim, Jin-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.54-57
    • /
    • 2003
  • [ $HfO_xN_y$ ] films using a hafnium tertiary-butoxide $(Hf[OC(CH_3)_3]_4)$ in plasma and $N_2$ ambient were prepared to improve the thermal stability of hafnium-based gate dielectrics. A 10% nitrogen incorporation into $HfO_2$ films showed a smooth surface morphology and a crystallization temperature as high as $200^{\circ}C$ compared with pure $HfO_2$ films. The $TaN/HfO_xN_y/Si$ capacitors showed a stable capacitance-voltage characteristics even at post-metal annealing temperature of $1000^{\circ}C$ in $N_2$ ambient and a constant value of 1.6 nm EOT (equivalent oxide thickness) irrespective of an increase of PDA and PMA temperature. Leakage current densities of $HfO_xN_y$ capacitors annealed at PDA temperature of 800 and $900^{\circ}C$, respectively were approximately one order of magnitude lower than that of $HfO_2$ capacitors.

  • PDF

Microwave Dielectric Properties of $ZnWO_4$ Ceramics ($ZnWO_4$ 세라믹의 마이크로파 유전특성)

  • Yoon, Sang-Ok;Yun, Jong-Hun;Kim, Dae-Min;Hong, Sang-Heung;Kang, Ki-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.642-645
    • /
    • 2002
  • Microwave dielectric properties of $ZnWO_4$ ceramic were investigated with calcination and sintering temperatures. The dielectric properties required for such application are high dielectric constant$(\varepsilon_r)$, high $Q{\times}f_o$ value and low temperature coefficient of resonant frequency$(\tau_f)$. These requirement correspond to necessities for size reduction, excellent frequency selectivity, good temperature stability of devices. $ZnWO_4$ ceramics could be sintered at low $1075^{\circ}C$, which was comparatively low temperature for microwave dielectrics. As a result, $ZnWO_4$ showed the dielectric constant of 13, quality factor($Q{\times}f_o$ value) of 22000 and 'temperature coefficient of resonant frequency$(\tau_f)$ of $-65{\pm}5ppm/^{\circ}C$.

  • PDF

Sintering and Microwave Dielectric Properties of Bi18(Ca0.725Zn0.275)8Nb12O65 [BCZN] Dielectrics with V2O5 Addition (소결조제 V2O5 첨가에 따른 Bi18(Ca0.725Zn0.275)8Nb12O65 [BCZN] 유전체의 소결 및 마이크로파 유전특성)

  • Lee, Young-Jong;Kim, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.289-294
    • /
    • 2010
  • For the aim of low-temperature co-fired ceramic microwave components, sintering behavior and microwave properties (dielectric constant ${\varepsilon}_r$, quality factor Q, and temperature coefficient of resonant frequency ${\tau}_f$) are investigated in $Bi_{18}O(Ca_{0.725}Zn_{0.275})_8Nb_{12}O_{65}$ [BCZN] ceramics with addition of $V_2O_5$. The specimens are prepared by conventional ceramic processing technique. As the main result, it is demonstrated that the additives ($V_2O_5$) show the effect of lowering of sintering temperature and improvement of microwave properties at the optimum additive content. The addition of 0.25 wt% $V_2O_5$ lowers the sintering temperature to $890^{\circ}C$ utilizing liquidphase sintering and show the microwave dielectric properties (dielectric constant ${\varepsilon}_r$ = 75, quality factor $Q{\times}f$ = 572 GHz, temperature coefficient of resonance frequency ${\tau}_f\;=\;-10\;ppm/^{\circ}C$). The estimated microwave dielectric properties with $V_2O_5$ addition (increase of ${\varepsilon}_r$, decrease of $Q{\times}f$, shift of ${\tau}_f$ to negative values) can be explained by the observed microstrucure (sintered density, abnormal grain structure) and possibly high-permittivity $Bi_{18}Zn_8Nb_{12}O_{65}$ (BZN) phase determined by X-ray diffraction.

Flexibility Improvement of InGaZnO Thin Film Transistors Using Organic/inorganic Hybrid Gate Dielectrics

  • Hwang, B.U.;Kim, D.I.;Jeon, H.S.;Lee, H.J.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.341-341
    • /
    • 2012
  • Recently, oxide semi-conductor materials have been investigated as promising candidates replacing a-Si:H and poly-Si semiconductor because they have some advantages of a room-temperature process, low-cost, high performance and various applications in flexible and transparent electronics. Particularly, amorphous indium-gallium-zinc-oxide (a-IGZO) is an interesting semiconductor material for use in flexible thin film transistor (TFT) fabrication due to the high carrier mobility and low deposition temperatures. In this work, we demonstrated improvement of flexibility in IGZO TFTs, which were fabricated on polyimide (PI) substrate. At first, a thin poly-4vinyl phenol (PVP) layer was spin coated on PI substrate for making a smooth surface up to 0.3 nm, which was required to form high quality active layer. Then, Ni gate electrode of 100 nm was deposited on the bare PVP layer by e-beam evaporator using a shadow mask. The PVP and $Al_2O_3$ layers with different thicknesses were used for organic/inorganic multi gate dielectric, which were formed by spin coater and atomic layer deposition (ALD), respectively, at $200^{\circ}C$. 70 nm IGZO semiconductor layer and 70 nm Al source/drain electrodes were respectively deposited by RF magnetron sputter and thermal evaporator using shadow masks. Then, IGZO layer was annealed on a hotplate at $200^{\circ}C$ for 1 hour. Standard electrical characteristics of transistors were measured by a semiconductor parameter analyzer at room temperature in the dark and performance of devices then was also evaluated under static and dynamic mechanical deformation. The IGZO TFTs incorporating hybrid gate dielectrics showed a high flexibility compared to the device with single structural gate dielectrics. The effects of mechanical deformation on the TFT characteristics will be discussed in detail.

  • PDF