DOI QR코드

DOI QR Code

Stable Anisotropic Freezing Modeling Technique Using the Interaction between IISPH Fluids and Ice Particles

안정적이고 이방성한 빙결 모델링을 위한 암시적 비압축성 유체와 얼음 입자간의 상호작용 기법

  • Received : 2020.09.10
  • Accepted : 2020.10.23
  • Published : 2020.12.01

Abstract

In this paper, we propose a new method to stable simulation the directional ice shape by coupling of freezing solver and viscous water flow. The proposed ice modeling framework considers viscous fluid flow in the direction of ice growth, which is important in freezing simulation. The water simulation solution uses the method of applying a new viscous technique to the IISPH(Implicit incompressible SPH) simulation, and the ice direction and the glaze effect use the proposed anisotropic freezing solution. The condition in which water particles change state to ice particles is calculated as a function of humidity and new energy with water flow. Humidity approximates a virtual water film on the surface of the object, and fluid flow is incorporated into our anisotropic freezing solution to guide the growth direction of ice. As a result, the results of the glaze and directional freezing simulations are shown stably according to the flow direction of viscous water.

본 논문에서는 흐르는 물에 의해 빙결 시뮬레이션 되어 방향성이 있는 얼음 형태를 안정적으로 모델링 할 수 있는 새로운 방법을 제시한다. 제안하는 얼음 모델링 프레임워크는 빙결 시뮬레이션에서 중요한 얼음의 성장 방향에 점성이 있는 유체의 흐름을 고려한다. 물 시뮬레이션 해법은 암시적 비압축성 유체 시뮬레이션에 새로운 점성 기법을 적용한 방법을 이용하고, 얼음의 방향과 글레이즈(Glaze) 효과는 제안하는 비등방성한 빙결 해법을 이용한다. 물 입자가 얼음 입자로 상태변화하는 조건은 습도와 물의 흐름에 따른 새로운 에너지 함수에 따라 계산된다. 습도는 오브젝트 표면의 가상 수막(Virtual water film)으로 근사되며, 유체의 흐름은 얼음의 성장 방향을 가이드하기 위해 우리의 비등방성한 빙결 해법에 통합된다. 결과적으로 점성이 있는 물의 흐름 방향에 따라 글레이즈와 방향성 있는 빙결 시뮬레이션 결과를 안정적으로 보여준다.

Keywords

References

  1. J. Im, H. Park, J.-H. Kim, and C.-H. Kim, "A particle-grid method for opaque ice formation," in Computer Graphics Forum, vol. 32, no. 2pt3. Wiley Online Library, 2013, pp. 371-377.
  2. D. Kharitonsky and J. Gonczarowski, "A physically based model for icicle growth," The Visual Computer, vol. 10, no. 2, pp. 88-100, 1993. https://doi.org/10.1007/BF01901945
  3. T. Kim, D. Adalsteinsson, and M. C. Lin, "Modeling ice dynamics as a thin-film stefan problem," in Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, 2006, pp. 167-176.
  4. J. Gagnon and E. Paquette, "Procedural and interactive icicle modeling," The Visual Computer, vol. 27, no. 6-8, p. 451, 2011. https://doi.org/10.1007/s00371-011-0584-9
  5. J. Im, J.-H. Kim, W. Kim, N. Park, T. Kim, Y. B. Kim, J. Lee, and C.-H. Kim, "Visual simulation of rapidly freezing water based on crystallization," Computer Animation and Virtual Worlds, vol. 28, no. 3-4, p. e1767, 2017. https://doi.org/10.1002/cav.1767
  6. T. Kim, M. Henson, and M. C. Lin, "A hybrid algorithm for modeling ice formation," in Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, 2004, pp. 305-314.
  7. T. Nishino, K. Iwasaki, Y. Dobashi, and T. Nishita, "Visual simulation of freezing ice with air bubbles," in SIGGRAPH Asia 2012 Technical Briefs, 2012, pp. 1-4.
  8. J.-H. Kim, J. Im, C.-H. Kim, and J. Lee, "Subtle features of ice with cloudy effects and scratches from collision damage," Computer Animation and Virtual Worlds, vol. 27, no. 3-4, pp. 271-279, 2016. https://doi.org/10.1002/cav.1699
  9. T. Ishikawa, Y. Dobashi, Y. Yue, M. Kakimoto, T. Watanabe, K. Kondo, K. Iwasaki, and T. Nishita, "Visual simulation of glazed frost," in ACM SIGGRAPH 2013 Posters, 2013, pp. 1-1.
  10. Y. Miao and S. Xiao, "Particle-based ice freezing simulation," in Proceedings of the 14th ACM SIGGRAPH International Conference on Virtual Reality Continuum and its Applications in Industry, 2015, pp. 17-22.
  11. K. Iwasaki, H. Uchida, Y. Dobashi, and T. Nishita, "Fast particle-based visual simulation of ice melting," in Computer graphics forum, vol. 29, no. 7. Wiley Online Library, 2010, pp. 2215-2223. https://doi.org/10.1111/j.1467-8659.2010.01810.x
  12. M. Wicke, P. Hatt, M. Pauly, M. Muller, and M. H. Gross, "Versatile virtual materials using implicit connectivity." in SPBG, 2006, pp. 137-144.
  13. L. Makkonen, "A model of icicle growth," Journal of Glaciology, vol. 34, no. 116, pp. 64-70, 1988. https://doi.org/10.3189/S0022143000009072
  14. L. "Makkonen, "Models for the growth of rime, glaze, icicles and wet snow on structures," Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 358, no. 1776, pp. 2913-2939, 2000. https://doi.org/10.1098/rsta.2000.0690
  15. G. Meschke, C. Liu, and H. A. Mang, "Large strain finite-element analysis of snow," Journal of engineering mechanics, vol. 122, no. 7, pp. 591-602, 1996. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(591)
  16. A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle, "A material point method for snow simulation," ACM Transactions on Graphics (TOG), vol. 32, no. 4, pp. 1-10, 2013.
  17. A. P. Tampubolon, T. Gast, G. Klar, C. Fu, J. Teran, C. Jiang, and K. Museth, "Multi-species simulation of porous sand and water mixtures," ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp. 1-11, 2017.
  18. J. Wretborn, R. Armiento, and K. Museth, "Animation of crack propagation by means of an extended multi-body solver for the material point method," Computers & Graphics, vol. 69, pp. 131-139, 2017. https://doi.org/10.1016/j.cag.2017.10.005
  19. M. Gao, X. Wang, K. Wu, A. Pradhana, E. Sifakis, C. Yuksel, and C. Jiang, "Gpu optimization of material point methods," ACM Transactions on Graphics (TOG), vol. 37, no. 6, pp. 1-12, 2018.
  20. Y. Fang, M. Li, M. Gao, and C. Jiang, "Silly rubber: an implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids," ACM Transactions on Graphics (TOG), vol. 38, no. 4, pp. 1-13, 2019.
  21. S. Wang, M. Ding, T. F. Gast, L. Zhu, S. Gagniere, C. Jiang, and J. M. Teran, "Simulation and visualization of ductile fracture with the material point method," Proceedings of the ACM on Computer Graphics and Interactive Techniques, vol. 2, no. 2, pp. 1-20, 2019. https://doi.org/10.1145/3340256
  22. X. Han, T. F. Gast, Q. Guo, S. Wang, C. Jiang, and J. Teran, "A hybrid material point method for frictional contact with diverse materials," Proceedings of the ACM on Computer Graphics and Interactive Techniques, vol. 2, no. 2, pp. 1-24, 2019. https://doi.org/10.1145/3340256
  23. S.-K. Wong and I.-T. Fu, "Hybrid-based snow simulation and snow rendering with shell textures," Computer Animation and Virtual Worlds, vol. 26, no. 3-4, pp. 413-421, 2015. https://doi.org/10.1002/cav.1644
  24. N. Mukai, Y. Eto, and Y. Chang, "Representation method of snow splitting and sliding on a roof," in 5th International Conference on Advances in Engineering and Technology, 2017, pp. 100-103.
  25. F. Dagenais, J. Gagnon, and E. Paquette, "An efficient layered simulation workflow for snow imprints," The Visual Computer, vol. 32, no. 6-8, pp. 881-890, 2016. https://doi.org/10.1007/s00371-016-1261-9
  26. T. Takahashi and I. Fujishiro, "Particle-based simulation of snow trampling taking sintering effect into account," in ACM SIGGRAPH 2012 Posters, 2012, pp. 1-1.
  27. A. M. Abdelrazek, I. Kimura, and Y. Shimizu, "Numerical simulation of a small-scale snow avalanche tests using non-newtonian sph model," Transactions of the Japan Society of Civil Engineers, vol. 70, no. 2, pp. 681-690, 2014.
  28. P. Goswami, C. Markowicz, and A. Hassan, "Real-time particle-based snow simulation on the gpu," in EGPGV 2019. Eurographics-European Association for Computer Graphics, 2019.
  29. M. Ihmsen, J. Cornelis, B. Solenthaler, C. Horvath, and M. Teschner, "Implicit incompressible sph," IEEE transactions on visualization and computer graphics, vol. 20, no. 3, pp. 426-435, 2013. https://doi.org/10.1109/TVCG.2013.105
  30. N. Akinci, J. Cornelis, G. Akinci, and M. Teschner, "Coupling elastic solids with smoothed particle hydrodynamics fluids," Computer Animation and Virtual Worlds, vol. 24, no. 3-4, pp. 195-203, 2013. https://doi.org/10.1002/cav.1499
  31. N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, and M. Teschner, "Versatile rigid-fluid coupling for incompressible sph," ACM Transactions on Graphics (TOG), vol. 31, no. 4, pp. 1-8, 2012.
  32. X. He, H. Wang, F. Zhang, H. Wang, G. Wang, and K. Zhou, "Robust simulation of small-scale thin features in sph-based free surface flows," ACM Trans. Graph, vol. 34, no. 1, p. 7, 2013.
  33. S.-Y. Lii and S.-K. Wong, "Ice melting simulation with water flow handling," The Visual Computer, vol. 30, no. 5, pp. 531- 538, 2014. https://doi.org/10.1007/s00371-013-0878-1
  34. N. Akinci, G. Akinci, and M. Teschner, "Versatile surface tension and adhesion for sph fluids," ACM Transactions on Graphics (TOG), vol. 32, no. 6, pp. 1-8, 2013.
  35. J. W. Cahn and J. E. Hilliard, "Free energy of a nonuniform system. i. interfacial free energy," The Journal of chemical physics, vol. 28, no. 2, pp. 258-267, 1958. https://doi.org/10.1063/1.1744102
  36. J. Yu and G. Turk, "Reconstructing surfaces of particlebased fluids using anisotropic kernels," ACM Transactions on Graphics (TOG), vol. 32, no. 1, pp. 1-12, 2013.
  37. C. Dyken and G. Ziegler, "Gpu-accelerated data expansion for the marching cubes algorithm," in Proc. PGU Technology Conf, 2010, pp. 115-123.