DOI QR코드

DOI QR Code

Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory

  • Vinyas, M. (Non-linear Multifunctional Composites Analysis and Design (NMCAD) Lab, Department of Aerospace Engineering, Indian Institute of Science) ;
  • Harursampath, D. (Non-linear Multifunctional Composites Analysis and Design (NMCAD) Lab, Department of Aerospace Engineering, Indian Institute of Science) ;
  • Kattimani, S.C. (Department of Mechanical Engineering, National Institute of Technology Karnataka)
  • Received : 2019.04.25
  • Accepted : 2019.11.12
  • Published : 2020.03.25

Abstract

In this article, the static responses of layered magneto-electro-thermo-elastic (METE) plates in thermal environment have been investigated through FE methods. By using Reddy's third order shear deformation theory (TSDT) in association with the Hamilton's principle, the direct and derived quantities of the coupled system have been obtained. The coupled governing equations of METE plates have been derived through condensation technique. Three layered METE plates composed of piezoelectric and piezomagnetic phases are considered for evaluation. For investigating the correctness and accuracy, the results in this article are validated with previous researches. In addition, a special attention has been paid to evaluate the influence of different electro-magnetic boundary conditions and pyrocoupling on the coupled response of METE plates. Finally, the influence of stacking sequences, magnitude of temperature load and aspect ratio on the coupled static response of METE plates are investigated in detail.

Keywords

Acknowledgement

The first author acknowledges the support of CV Raman Post-Doc fellowship by Indian Institute of Science (IISc), Bangalore under Institute of Eminence scheme.

References

  1. Alaimo, A., Benedetti, I. and Milazzo, A. (2014), "A finite element formulation for large deflection of multilayered magneto-electro-elastic plates", Compos. Struct., 107, 643-653. https://dx.doi.org/10.1016/j.compstruct.2013.08.032.
  2. Altay, G. and Dokmeci, M.C. (2000), "Some Hamiltonian-type variational principles for motions of a hygro-thermoelastic medium", J. Therm. Stress., 23, 273-284. https://dx.doi.org/10.1080/014957300280443.
  3. Ansari, R. and Ghlomai, R. (2016), "Nonlocal free vibration in the pre- and postbuckled states of magneto-electro-thermo elastic rectangular nanoplates with various edge conditions", Smart Mater. Struct., 25, 095033. https://doi.org/10.1088/0964-1726/25/9/095033
  4. Badri, T.M. and Al-Kayiem, H.H. (2013), "Analytical solution for simply supported and multilayered Magneto-Electro-Elastic Plates", Asian J. Scientif. Res., 6, 236-244. http://dx.doi.org/10.3923/ajsr.2013.236.244.
  5. Benedetti, I. and Milazzo, A. (2017), "Advanced models for smart multilayered plates based on Reissner Mixed Variational Theorem", Compos. Part B: Eng., 119, 215-229. http://dx.doi.org/10.1016%2Fj.compositesb.2017.03.007. https://doi.org/10.1016/j.compositesb.2017.03.007
  6. Chen, J., Chen, H., Pan, E. and Heyliger, P.R. (2007), "Modal analysis of magneto-electro-elastic plates using the state-vector approach", J. Sound Vib., 304(3), 722-734. http://dx.doi.org/10.1016/j.jsv.2007.03.021.
  7. Chen, W. and Shioya, T. (2001), "Piezothermoelastic behavior of a pyroelectric spherical shell", J. Therm. Stress., 24(2), 105-120. https://doi.org/10.1080/01495730150500424.
  8. Ebrahimi, F. and Barati, M.R. (2016b), "Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position", J. Therm. Stress., 39(10), 1210-1229. https://doi.org/10.1080/01495739.2016.1215726.
  9. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  10. Gholami, R., Ansari, R. and Gholami, Y. (2017), "Size-dependent bending, buckling and vibration of higher-order shear deformable magneto-electro-thermo-elastic rectangular nanoplates", Mater. Res. Exp., 4, 065702. https://doi.org/10.1088/2053-1591/aa711c
  11. Huang, D.J., Ding, H.J. and Chen, W.Q. (2007), "Analytical solution for functionally graded magneto-electro-elastic plane beams", Int. J. Eng. Sci., 45(2), 467-485. https://doi.org/10.1016/j.ijengsci.2007.03.005.
  12. Huang, D.J., Ding, H.J. and Chen, W.Q. (2010), "Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading", Eur. J. Mech. A/Solid., 29(3), 356-369. https://doi.org/10.1016/j.euromechsol.2009.12.002.
  13. Kattimani, S.C. and Ray, M.C. (2015), "Control of geometrically nonlinear vibrations of functionally graded magneto-electro-elastic plates", Int. J. Mech. Sci., 99, 154-167. https://doi.org/10.1016/j.ijmecsci.2015.05.012.
  14. Kerur, S.B. and Ghosh, A. (2013), "Geometrically non-linear bending analysis of piezoelectric fiber-reinforced composite (MFC/AFC) cross-ply plate under hygrothermal environment", J. Therm. Stress., 36(12), 1255-1282. https://doi.org/10.1080/01495739.2013.818887.
  15. Kondaiah, P., Shankar, K. and Ganesan, N. (2012), "Studies on magneto-electro-elastic cantilever beam under thermal environment", Couple. Syst. Mech., 1(2), 205-217. http://dx.doi.org/10.12989/csm.2012.1.2.205.
  16. Kondaiah, P., Shankar, K. and Ganesan, N. (2013a), "Pyroelectric and pyromagnetic effects on behaviour of magneto-electro-elastic plate", Couple. Syst. Mech., 2, 1-22. https://doi.org/10.12989/csm.2013.2.1.001.
  17. Kondaiah, P., Shankar, K. and Ganesan, N. (2013b), "Pyroelectric and pyromagnetic effects on multiphase magneto-electro-elastic cylindrical shells for axisymmetric temperature", Smart Mater. Struct., 22(2), 025007. http://dx.doi.org/10.1088/0964-1726/22/2/025007.
  18. Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Steady-state analysis of a three-layered electro-magneto-elastic strip in a thermal environment", Smart Mater. Struct., 16(2), 282-295. https://doi.org/10.1088/0964-1726/16/2/006.
  19. Lage, R.G., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2004), "Layerwise partial mixed finite element analysis of magneto-electro-elastic plates", Comput. Struct., 82(17), 1293-1301. http://dx.doi.org/10.1016/j.compstruc.2004.03.026.
  20. Milazzo, A. (2013), "A one-dimensional model for dynamic analysis of generally layered magneto-electro-elastic beams", J. Sound Vib., 332(2), 465-483. http://dx.doi.org/10.1016/j.jsv.2012.09.004.
  21. Milazzo, A. (2014a), "Layer-wise and equivalent single layer models for smart multilayered plates", Compos. Part B: Eng., 67, 62-75. http://dx.doi.org/10.1016/j.compositesb.2014.06.021.
  22. Milazzo, A. (2014b), "Refined equivalent single layer formulations and finite elements for smart laminates free vibrations", Compos. Part B: Eng., 61, 238-253. http://dx.doi.org/10.1016/j.compositesb.2014.01.055.
  23. Moita, J.M.S., Soares, C.M.M. and Soares, C.A.M. (2009), "Analyses of magneto-electro-elastic plates using a higher order finite element model", Compos. Struct., 91(4), 421-426. http://dx.doi.org/10.1016/j.compstruct.2009.04.007.
  24. Pan, E. (2001a), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech., 68(4), 608-618. http://dx.doi.org/10.1115/1.1380385.
  25. Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3), 321-339. http://dx.doi.org/10.1016/j.ijengsci.2004.09.006.
  26. Pan, E. and Heyliger, P.R. (2003), "Exact solutions for magneto-electro-elastic laminates in cylindrical bending", Int. J. Solid. Struct., 40(24), 6859-6876. http://dx.doi.org/10.1016/j.ijsolstr.2003.08.003.
  27. Razavi, S. and Shooshtari, A. (2015), "Nonlinear free vibration of magneto-electro-elastic rectangular plates", Compos. Struct., 119, 377-384. https://doi.org/10.1016/j.compstruct.2014.08.034.
  28. Reddy, J.N. (1997), Mechanics of Laminated Composite Plates, CRC Press, Boca Raton, FL, USA.
  29. Saadatfar, M. and Aghaie-Khafri, M. (2015), "On the behavior of a rotating functionally graded hybrid cylindrical shell with imperfect bonding subjected to hygrothermal condition", J. Therm. Stress., 38(8), 854-881. https://doi.org/10.1080/01495739.2015.1038487.
  30. Shooshtari, A. and Razavi, S. (2015a), "Large amplitude free vibration of symmetrically laminated magneto-electro-elastic rectangular plates on Pasternak type foundation", Mech. Res. Commun., 69, 103-113. http://dx.doi.org/10.1016%2Fj.mechrescom.2015.06.011. https://doi.org/10.1016/j.mechrescom.2015.06.011
  31. Shooshtari, A. and Razavi, S. (2015b), "Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doubly-curved shell on elastic foundation", Compos. Part B: Eng., 78, 95-108. http://dx.doi.org/10.1016%2Fj.compositesb.2015.03.070. https://doi.org/10.1016/j.compositesb.2015.03.070
  32. Shooshtari, A. and Razavi, S. (2016), "Large-amplitude free vibration of magneto-electro-elastic curved panels", Scientia Iranica B, 23(6), 2606-2615. https://doi.org/10.24200/sci.2016.3970
  33. Sit, M., Ray, C. and Biswas, D. (2015), "Thermal stress analysis of laminated composite plates using third order shear deformation theory", Advances in Structural Engineering, Eds. Matsagar, V., Springer, New Delhi, 149-156.
  34. Sladek, J., Sladek, V., Krahulec, S. and Pan, E. (2013), "The MLPG analyses of large deflections of magnetoelectroelastic plates", Eng. Anal. Bound. Elem., 37(4), 673-682. https://doi.org/10.1016/j.enganabound.2013.02.001.
  35. Sunar, M., Al-Garni, A.Z., Ali, M.H. and Kahraman, R. (2002), "Finite element modelling of thermopiezomagnetic smart structures", AIAA J., 40, 1845-1851. https://doi.org/10.2514/2.1862.
  36. Vinyas, M. (2019a), "A higher order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods", Compos. Part B: Eng., 158, 286-301. https://doi.org/10.1016/j.compositesb.2018.09.086.
  37. Vinyas, M. (2019b), "Vibration control of skew magneto-electro-elastic plates using active constrained layer damping", Compos. Struct., 208, 600-617. https://doi.org/10.1016/j.compstruct.2018.10.046.
  38. Vinyas, M. and Kattimani, S.C. (2017a), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Compos. Struct., 163, 216-237. https://doi.org/10.1016/j.compstruct.2016.12.040.
  39. Vinyas, M. and Kattimani, S.C. (2017b), "A Finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading", Struct. Eng. Mech., 62(5), 519-535. https://doi.org/10.12989/sem.2017.62.5.519.
  40. Vinyas, M. and Kattimani, S.C. (2017c), "Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: A finite element study", Compos. Struct., 178, 63-85. https://doi.org/10.1016/j.compstruct.2017.06.068.
  41. Vinyas, M. and Kattimani, S.C. (2017d), "Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam", Struct. Eng. Mech., 63(4), 481-495. https://doi.org/10.12989/sem.2017.63.4.41.
  42. Vinyas, M. and Kattimani, S.C. (2017e), "Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment", Coupl. Syst. Mech., 6(3), 351-368. https://doi.org/10.12989/csm.2017.6.3.351.
  43. Vinyas, M. and Kattimani, S.C. (2017f), "A 3D finite element static and free vibration analysis of magneto-electro-elastic beam", Coupl. Syst. Mech., 6(4), 465-485. https://doi.org/10.12989/csm.2017.6.4.465.
  44. Vinyas, M. and Kattimani, S.C. (2017g), "Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis", Compos. Struct., 180, 617-637. https://doi.org/10.1016/j.compstruct.2017.08.015.
  45. Vinyas, M. and Kattimani, S.C. (2018a), "Finite element evaluation of free vibration characteristics of magneto-electro-elastic rectangular plates in hygrothermal environment using higher-order shear deformation theory", Compos. Struct., 202, 1339-1352. https://doi.org/10.1016/j.compstruct.2018.06.069.
  46. Vinyas, M. and Kattimani, S.C. (2018c), "Investigation of the effect of $BaTiO_3/CoFe_2O_4$ particle arrangement on the static response of magneto-electro-thermo-elastic plates", Compos. Struct., 185, 51-64. https://doi.org/10.1016/j.compstruct.2017.10.073.
  47. Vinyas, M. and Kattimani, S.C. (2019a), "Finite element simulation of controlled frequency response of skewed multiphase magneto-electro-elastic plates", J. Intel. Mater. Syst. Struct., 30(12), 1757-1771. https://doi.org/10.1177/1045389X19843674.
  48. Vinyas, M., Kattimani, S.C. and Sharanappa, J. (2018b), "Hygrothermal coupling analysis of magneto-electro-elastic beams using finite element methods", J. Therm. Stress., 41(8), 1063-1079. https://doi.org/10.1080/01495739.2018.1447856.
  49. Vinyas, M., Kattimani, S.C., Harursampath, D. and Nguyen Thoi, T. (2019c), "Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment", Smart Struct. Syst., 24(2), 267-292. https://doi.org/10.12989/sss.2019.24.2.267.
  50. Vinyas, M., Kattimani, S.C., Loja, M.A.R. and Vishwas, M. (2018), "Effect of $BaTiO_3/CoFe_2O_4$ micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams indifferent thermal environment", Mater. Res. Exp., 5, 125702. https://doi.org/10.1088/2053-1591/aae0c8.
  51. Vinyas, M., Nischith, G., Loja, M.A.R., Ebrahimi, F. and Duc, N.D. (2019a), "Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory", Compos. Struct., 214, 132-142. https://doi.org/10.1016/j.compstruct.2019.02.010.
  52. Vinyas, M., Piyush, J.S. and Kattimani, S.C. (2017a), "Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate", J. Intel. Mater. Syst. Struct., 29(7), 1430-1455. https://doi.org/10.1177/1045389X17740739.
  53. Vinyas, M., Sandeep, A.S., Trung, N.T., Ebrahimi, F. and Duc, N.D. (2019d), "A finite element based assessment of free vibration behaviour of circular and annular magneto-electro-elastic plates using higher order shear deformation theory", J. Intel. Mater. Syst. Struct., 30(6), 2478-2501. https://doi.org/10.1177/1045389X19862386.
  54. Vinyas, M., Sunny, K.K., Harursampath, D., Trung, N.T. and Loja, M.A.R. (2019b), "Influence of interphase on the multi-physics coupled frequency of three phase smart magneto-electro-elastic composite plates", Compos. Struct., 226, 111254. https://doi.org/10.1016/j.compstruct.2019.111254.
  55. Wang, J., Chen, L. and Fang, S. (2003), "State vector approach to analysis of multilayered magneto-electro-elastic plates", Int. J. Solid. Struct., 40(7), 1669-1680. https://doi.org/10.1016/S0020-7683(03)00027-1.
  56. Xin, L. and Hu, Z. (2015), "Free vibration of simply supported and multilayered magneto-electro-elastic plates", Compos. Struct., 121, 344-350. https://doi.org/10.1016/j.compstruct.2014.11.030.

Cited by

  1. A dual-phase-lag theory of thermal wave in a porothermoelastic nanoscale material by FEM vol.79, pp.1, 2020, https://doi.org/10.12989/sem.2021.79.1.001