Acknowledgement
The first author acknowledges the support of CV Raman Post-Doc fellowship by Indian Institute of Science (IISc), Bangalore under Institute of Eminence scheme.
References
- Alaimo, A., Benedetti, I. and Milazzo, A. (2014), "A finite element formulation for large deflection of multilayered magneto-electro-elastic plates", Compos. Struct., 107, 643-653. https://dx.doi.org/10.1016/j.compstruct.2013.08.032.
- Altay, G. and Dokmeci, M.C. (2000), "Some Hamiltonian-type variational principles for motions of a hygro-thermoelastic medium", J. Therm. Stress., 23, 273-284. https://dx.doi.org/10.1080/014957300280443.
- Ansari, R. and Ghlomai, R. (2016), "Nonlocal free vibration in the pre- and postbuckled states of magneto-electro-thermo elastic rectangular nanoplates with various edge conditions", Smart Mater. Struct., 25, 095033. https://doi.org/10.1088/0964-1726/25/9/095033
- Badri, T.M. and Al-Kayiem, H.H. (2013), "Analytical solution for simply supported and multilayered Magneto-Electro-Elastic Plates", Asian J. Scientif. Res., 6, 236-244. http://dx.doi.org/10.3923/ajsr.2013.236.244.
- Benedetti, I. and Milazzo, A. (2017), "Advanced models for smart multilayered plates based on Reissner Mixed Variational Theorem", Compos. Part B: Eng., 119, 215-229. http://dx.doi.org/10.1016%2Fj.compositesb.2017.03.007. https://doi.org/10.1016/j.compositesb.2017.03.007
- Chen, J., Chen, H., Pan, E. and Heyliger, P.R. (2007), "Modal analysis of magneto-electro-elastic plates using the state-vector approach", J. Sound Vib., 304(3), 722-734. http://dx.doi.org/10.1016/j.jsv.2007.03.021.
- Chen, W. and Shioya, T. (2001), "Piezothermoelastic behavior of a pyroelectric spherical shell", J. Therm. Stress., 24(2), 105-120. https://doi.org/10.1080/01495730150500424.
- Ebrahimi, F. and Barati, M.R. (2016b), "Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position", J. Therm. Stress., 39(10), 1210-1229. https://doi.org/10.1080/01495739.2016.1215726.
- Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
- Gholami, R., Ansari, R. and Gholami, Y. (2017), "Size-dependent bending, buckling and vibration of higher-order shear deformable magneto-electro-thermo-elastic rectangular nanoplates", Mater. Res. Exp., 4, 065702. https://doi.org/10.1088/2053-1591/aa711c
- Huang, D.J., Ding, H.J. and Chen, W.Q. (2007), "Analytical solution for functionally graded magneto-electro-elastic plane beams", Int. J. Eng. Sci., 45(2), 467-485. https://doi.org/10.1016/j.ijengsci.2007.03.005.
- Huang, D.J., Ding, H.J. and Chen, W.Q. (2010), "Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading", Eur. J. Mech. A/Solid., 29(3), 356-369. https://doi.org/10.1016/j.euromechsol.2009.12.002.
- Kattimani, S.C. and Ray, M.C. (2015), "Control of geometrically nonlinear vibrations of functionally graded magneto-electro-elastic plates", Int. J. Mech. Sci., 99, 154-167. https://doi.org/10.1016/j.ijmecsci.2015.05.012.
- Kerur, S.B. and Ghosh, A. (2013), "Geometrically non-linear bending analysis of piezoelectric fiber-reinforced composite (MFC/AFC) cross-ply plate under hygrothermal environment", J. Therm. Stress., 36(12), 1255-1282. https://doi.org/10.1080/01495739.2013.818887.
- Kondaiah, P., Shankar, K. and Ganesan, N. (2012), "Studies on magneto-electro-elastic cantilever beam under thermal environment", Couple. Syst. Mech., 1(2), 205-217. http://dx.doi.org/10.12989/csm.2012.1.2.205.
- Kondaiah, P., Shankar, K. and Ganesan, N. (2013a), "Pyroelectric and pyromagnetic effects on behaviour of magneto-electro-elastic plate", Couple. Syst. Mech., 2, 1-22. https://doi.org/10.12989/csm.2013.2.1.001.
- Kondaiah, P., Shankar, K. and Ganesan, N. (2013b), "Pyroelectric and pyromagnetic effects on multiphase magneto-electro-elastic cylindrical shells for axisymmetric temperature", Smart Mater. Struct., 22(2), 025007. http://dx.doi.org/10.1088/0964-1726/22/2/025007.
- Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Steady-state analysis of a three-layered electro-magneto-elastic strip in a thermal environment", Smart Mater. Struct., 16(2), 282-295. https://doi.org/10.1088/0964-1726/16/2/006.
- Lage, R.G., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2004), "Layerwise partial mixed finite element analysis of magneto-electro-elastic plates", Comput. Struct., 82(17), 1293-1301. http://dx.doi.org/10.1016/j.compstruc.2004.03.026.
- Milazzo, A. (2013), "A one-dimensional model for dynamic analysis of generally layered magneto-electro-elastic beams", J. Sound Vib., 332(2), 465-483. http://dx.doi.org/10.1016/j.jsv.2012.09.004.
- Milazzo, A. (2014a), "Layer-wise and equivalent single layer models for smart multilayered plates", Compos. Part B: Eng., 67, 62-75. http://dx.doi.org/10.1016/j.compositesb.2014.06.021.
- Milazzo, A. (2014b), "Refined equivalent single layer formulations and finite elements for smart laminates free vibrations", Compos. Part B: Eng., 61, 238-253. http://dx.doi.org/10.1016/j.compositesb.2014.01.055.
- Moita, J.M.S., Soares, C.M.M. and Soares, C.A.M. (2009), "Analyses of magneto-electro-elastic plates using a higher order finite element model", Compos. Struct., 91(4), 421-426. http://dx.doi.org/10.1016/j.compstruct.2009.04.007.
- Pan, E. (2001a), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech., 68(4), 608-618. http://dx.doi.org/10.1115/1.1380385.
- Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3), 321-339. http://dx.doi.org/10.1016/j.ijengsci.2004.09.006.
- Pan, E. and Heyliger, P.R. (2003), "Exact solutions for magneto-electro-elastic laminates in cylindrical bending", Int. J. Solid. Struct., 40(24), 6859-6876. http://dx.doi.org/10.1016/j.ijsolstr.2003.08.003.
- Razavi, S. and Shooshtari, A. (2015), "Nonlinear free vibration of magneto-electro-elastic rectangular plates", Compos. Struct., 119, 377-384. https://doi.org/10.1016/j.compstruct.2014.08.034.
- Reddy, J.N. (1997), Mechanics of Laminated Composite Plates, CRC Press, Boca Raton, FL, USA.
- Saadatfar, M. and Aghaie-Khafri, M. (2015), "On the behavior of a rotating functionally graded hybrid cylindrical shell with imperfect bonding subjected to hygrothermal condition", J. Therm. Stress., 38(8), 854-881. https://doi.org/10.1080/01495739.2015.1038487.
- Shooshtari, A. and Razavi, S. (2015a), "Large amplitude free vibration of symmetrically laminated magneto-electro-elastic rectangular plates on Pasternak type foundation", Mech. Res. Commun., 69, 103-113. http://dx.doi.org/10.1016%2Fj.mechrescom.2015.06.011. https://doi.org/10.1016/j.mechrescom.2015.06.011
- Shooshtari, A. and Razavi, S. (2015b), "Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doubly-curved shell on elastic foundation", Compos. Part B: Eng., 78, 95-108. http://dx.doi.org/10.1016%2Fj.compositesb.2015.03.070. https://doi.org/10.1016/j.compositesb.2015.03.070
- Shooshtari, A. and Razavi, S. (2016), "Large-amplitude free vibration of magneto-electro-elastic curved panels", Scientia Iranica B, 23(6), 2606-2615. https://doi.org/10.24200/sci.2016.3970
- Sit, M., Ray, C. and Biswas, D. (2015), "Thermal stress analysis of laminated composite plates using third order shear deformation theory", Advances in Structural Engineering, Eds. Matsagar, V., Springer, New Delhi, 149-156.
- Sladek, J., Sladek, V., Krahulec, S. and Pan, E. (2013), "The MLPG analyses of large deflections of magnetoelectroelastic plates", Eng. Anal. Bound. Elem., 37(4), 673-682. https://doi.org/10.1016/j.enganabound.2013.02.001.
- Sunar, M., Al-Garni, A.Z., Ali, M.H. and Kahraman, R. (2002), "Finite element modelling of thermopiezomagnetic smart structures", AIAA J., 40, 1845-1851. https://doi.org/10.2514/2.1862.
- Vinyas, M. (2019a), "A higher order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods", Compos. Part B: Eng., 158, 286-301. https://doi.org/10.1016/j.compositesb.2018.09.086.
- Vinyas, M. (2019b), "Vibration control of skew magneto-electro-elastic plates using active constrained layer damping", Compos. Struct., 208, 600-617. https://doi.org/10.1016/j.compstruct.2018.10.046.
- Vinyas, M. and Kattimani, S.C. (2017a), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Compos. Struct., 163, 216-237. https://doi.org/10.1016/j.compstruct.2016.12.040.
- Vinyas, M. and Kattimani, S.C. (2017b), "A Finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading", Struct. Eng. Mech., 62(5), 519-535. https://doi.org/10.12989/sem.2017.62.5.519.
- Vinyas, M. and Kattimani, S.C. (2017c), "Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: A finite element study", Compos. Struct., 178, 63-85. https://doi.org/10.1016/j.compstruct.2017.06.068.
- Vinyas, M. and Kattimani, S.C. (2017d), "Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam", Struct. Eng. Mech., 63(4), 481-495. https://doi.org/10.12989/sem.2017.63.4.41.
- Vinyas, M. and Kattimani, S.C. (2017e), "Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment", Coupl. Syst. Mech., 6(3), 351-368. https://doi.org/10.12989/csm.2017.6.3.351.
- Vinyas, M. and Kattimani, S.C. (2017f), "A 3D finite element static and free vibration analysis of magneto-electro-elastic beam", Coupl. Syst. Mech., 6(4), 465-485. https://doi.org/10.12989/csm.2017.6.4.465.
- Vinyas, M. and Kattimani, S.C. (2017g), "Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis", Compos. Struct., 180, 617-637. https://doi.org/10.1016/j.compstruct.2017.08.015.
- Vinyas, M. and Kattimani, S.C. (2018a), "Finite element evaluation of free vibration characteristics of magneto-electro-elastic rectangular plates in hygrothermal environment using higher-order shear deformation theory", Compos. Struct., 202, 1339-1352. https://doi.org/10.1016/j.compstruct.2018.06.069.
-
Vinyas, M. and Kattimani, S.C. (2018c), "Investigation of the effect of
$BaTiO_3/CoFe_2O_4$ particle arrangement on the static response of magneto-electro-thermo-elastic plates", Compos. Struct., 185, 51-64. https://doi.org/10.1016/j.compstruct.2017.10.073. - Vinyas, M. and Kattimani, S.C. (2019a), "Finite element simulation of controlled frequency response of skewed multiphase magneto-electro-elastic plates", J. Intel. Mater. Syst. Struct., 30(12), 1757-1771. https://doi.org/10.1177/1045389X19843674.
- Vinyas, M., Kattimani, S.C. and Sharanappa, J. (2018b), "Hygrothermal coupling analysis of magneto-electro-elastic beams using finite element methods", J. Therm. Stress., 41(8), 1063-1079. https://doi.org/10.1080/01495739.2018.1447856.
- Vinyas, M., Kattimani, S.C., Harursampath, D. and Nguyen Thoi, T. (2019c), "Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment", Smart Struct. Syst., 24(2), 267-292. https://doi.org/10.12989/sss.2019.24.2.267.
-
Vinyas, M., Kattimani, S.C., Loja, M.A.R. and Vishwas, M. (2018), "Effect of
$BaTiO_3/CoFe_2O_4$ micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams indifferent thermal environment", Mater. Res. Exp., 5, 125702. https://doi.org/10.1088/2053-1591/aae0c8. - Vinyas, M., Nischith, G., Loja, M.A.R., Ebrahimi, F. and Duc, N.D. (2019a), "Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory", Compos. Struct., 214, 132-142. https://doi.org/10.1016/j.compstruct.2019.02.010.
- Vinyas, M., Piyush, J.S. and Kattimani, S.C. (2017a), "Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate", J. Intel. Mater. Syst. Struct., 29(7), 1430-1455. https://doi.org/10.1177/1045389X17740739.
- Vinyas, M., Sandeep, A.S., Trung, N.T., Ebrahimi, F. and Duc, N.D. (2019d), "A finite element based assessment of free vibration behaviour of circular and annular magneto-electro-elastic plates using higher order shear deformation theory", J. Intel. Mater. Syst. Struct., 30(6), 2478-2501. https://doi.org/10.1177/1045389X19862386.
- Vinyas, M., Sunny, K.K., Harursampath, D., Trung, N.T. and Loja, M.A.R. (2019b), "Influence of interphase on the multi-physics coupled frequency of three phase smart magneto-electro-elastic composite plates", Compos. Struct., 226, 111254. https://doi.org/10.1016/j.compstruct.2019.111254.
- Wang, J., Chen, L. and Fang, S. (2003), "State vector approach to analysis of multilayered magneto-electro-elastic plates", Int. J. Solid. Struct., 40(7), 1669-1680. https://doi.org/10.1016/S0020-7683(03)00027-1.
- Xin, L. and Hu, Z. (2015), "Free vibration of simply supported and multilayered magneto-electro-elastic plates", Compos. Struct., 121, 344-350. https://doi.org/10.1016/j.compstruct.2014.11.030.
Cited by
- A dual-phase-lag theory of thermal wave in a porothermoelastic nanoscale material by FEM vol.79, pp.1, 2020, https://doi.org/10.12989/sem.2021.79.1.001