DOI QR코드

DOI QR Code

Critical thrust force and feed rate determination in drilling of GFRP laminate with backup plate

  • Heidary, Hossein (Department of Mechanical Engineering, Tafresh University) ;
  • Mehrpouya, Mohammad A. (Department of Mathematics, Tafresh University) ;
  • Saghafi, Hamed (Department of Mechanical Engineering, Tafresh University) ;
  • Minak, Giangiacomo (Department of Industrial Engineering (DIN), Alma Mater Studiorum, Universita di Bologna)
  • 투고 : 2018.07.11
  • 심사 : 2019.11.12
  • 발행 : 2020.03.25

초록

Using backup plate is one of the most commonly used methods to decrease drilling-induced delamination of composite laminates. It has been shown that, the size of the delamination zone is related to the vertical element of cutting force named as thrust force. Also, direct control of thrust force is not a routine task, because, it depends on both drilling parameters and mechanical properties of the composite laminate. In this research, critical feed rate and thrust force are predicted analytically for delamination initiation in drilling of composite laminates with backup plate. Three common theories, linear elastic fracture mechanics, classical laminated plate and mechanics of oblique cutting, are used to model the problem. Based on the proposed analytical model, the effect of drill radius, chisel edge size, and backup plate size on the critical thrust force and feed rate are investigated. Experimental tests were carried out to prove analytical model.

키워드

참고문헌

  1. Prabukarthi, A., Senthilkumar, M. and Krishnaraj, V. (2016), "Study on drilling of CFRP/Ti6Al4V stack with modified twist drills using acoustic emission technique", Steel Compos. Struct., 21(3), 573-588. https://doi.org/10.12989/scs.2016.21.3.573.
  2. Mohammadzadeh, B., Choi, E. and Kim, W.J. (2018), "Comprehensive investigation of buckling behavior of plates considering effects of holes", Struct. Eng. Mech., 68(2), 261-275. https://doi.org/10.12989/sem.2018.68.2.261.
  3. Bhattacharyya, D. and Horrigan, D.P.W. (1998), "A study of hole drilling in Kevlar composites", Compos. Sci. Technol., 58(2), 267-283. https://doi.org/10.1016/S0266-3538(97)00127-9.
  4. Campos Rubio, J.C., Silva, L.J.D., Leite, W.D.O., Panzera, T.H., Filho, S.L.M.R. and Davim, J.P. (2013), "Investigations on the drilling process of unreinforced and reinforced polyamides using Taguchi method", Compos. Part B Eng., 55, 338-344. https://doi.org/10.1016/j.compositesb.2013.06.042.
  5. Capello, E. (2004), "Workpiece damping and its effect on delamination damage in drilling thin composite laminates", J. Mater. Process. Technol., 148(2), 186-195. https://doi.org/10.1016/S0924-0136(03)00812-4.
  6. Chandrasekharan, V., Kapoor, S.G. and DeVor, R.E. (1995), "A mechanistic approach to predicting the cutting forces in drilling: With application to fiber-reinforced composite materials", J. Eng. Industry, 117(4), 559-570. https://doi.org/10.1115/1.2803534.
  7. Chen, W.C. (1997), "Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates", Int. J. Machine Tools Manufact., 37(8), 1097-1108. https://doi.org/10.1016/S0890-6955(96)00095-8.
  8. Davim, J.P., Rubio, J.C. and Abrao, A.M. (2007), "A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates", Compos. Sci. Technol., 67(9), 1939-1945. https://doi.org/10.1016/j.compscitech.2006.10.009.
  9. Kim, D.K., Ng, W.C.K. and Hwang, O. (2018), "An empirical formulation to predict maximum deformation of blast wall under explosion", Struct. Eng. Mech., 68(2), 237-245. https://doi.org/10.12989/sem.2018.68.2.237.
  10. El-Sonbaty, I., Khashaba, U.A. and Machaly, T. (2004), "Factors affecting the machinability of GFR/epoxy composites", Compos. Structures, 63(3-4), 329-338. https://doi.org/10.1016/S0263-8223(03)00181-8.
  11. Fernandes, M. and Cook, C. (2006), "Drilling of carbon composites using a one shot drill bit. Part I: Five stage representation of drilling and factors affecting maximum force and torque", Int. J. Machine Tools Manufact., 46(1), 70-75. https://doi.org/10.1016/j.ijmachtools.2005.03.015.
  12. Fernandes, M. and Cook, C. (2006), "Drilling of carbon composites using a one shot drill bit. Part II: Empirical modeling of maximum thrust force", Int. J. Machine Tools Manufact., 46(1), 76-79. https://doi.org/10.1016/j.ijmachtools.2005.03.016.
  13. Caprino, G. and Nele, L. (1996), "Cutting forces in orthogonal cutting of unidirectional GFRP composites", J. Eng. Mater. Technol., 118(3), 419-425. https://doi.org/10.1115/1.2806829.
  14. DiPaolo, G., Kapoor, S.G. and DeVor, R.E. (1996), "An experimental investigation of the crack growth phenomenon for drilling of fiber-reinforced composite materials", J. Eng. Ind., 118, 104-110. https://doi.org/10.1115/1.2803629.
  15. Gururaja, S. and Ramulu, M. (2009), "Modified exit-ply delamination model for drilling FRPs", J. Compos. Mater., 43(5), 483-500. https://doi.org/10.1177%2F0021998308097677. https://doi.org/10.1177/0021998308097677
  16. Hocheng, H. and Dharan, C.K.H. (1990), "Delamination during drilling in composite laminates", J. Eng. Ind., 112, 236-239. https://doi.org/10.1115/1.2899580
  17. Guenfoud, H., Himeur, M., Ziou, H. and Guenfoud, M. (2018), "The use of the strain approach to develop a new consistent triangular thin flat shell finite element with drilling rotation", Struct. Eng. Mech., 68(4), 385-398. https://doi.org/10.12989/sem.2018.68.4.385.
  18. Heidary, H. and Mehrpouya, M.A. (2019), "Effect of backup plate in drilling of composite laminates, analytical and experimental approaches", Thin-Walled Struct., 136, 323-332. https://doi.org/10.1016/j.tws.2018.12.035.
  19. Heidary, H., Zarif Karimi, N., Ahmadi, M., Rahimi, A. and Zucchelli, A. (2014), "Clustering of acoustic emission signals collected during drilling process of composite materials using unsupervised classifiers", J. Compos. Mater., 49(5), 559-571. https://doi.org/10.1177%2F0021998314521258. https://doi.org/10.1177/0021998314521258
  20. Hocheng, H. and Tsao, C.C. (2003), "Comprehensive analysis of delamination in drilling of composite materials with various drill bits", J. Mater. Process. Technol., 140(1-3), 335-339. https://doi.org/10.1016/S0924-0136(03)00749-0.
  21. Hocheng, H. and Tsao, C.C. (2005), "The path towards delamination-free drilling of composite materials", J. Mater. Process. Technol., 167(2-3), 251-264. https://doi.org/10.1016/j.jmatprotec.2005.06.039.
  22. Hocheng, H. and Tsao, C.C. (2006), "Effects of special drill bits on drilling-induced delamination of composite materials", Int. J. Machine Tools Manufact., 46(12-13), 1403-1416. https://doi.org/10.1016/j.ijmachtools.2005.10.004.
  23. Hou, J.P. and Jeronimidis, G. (2000), "Bending stiffness of composite plates with delamination", Compos. Part A Appl. Sci. Manufact., 31(2), 121-132. https://doi.org/10.1016/S1359-835X(99)00064-0.
  24. Hwang, H.J., Ma, G. and Kim, C.S. (2018), "Minimum thickness of flat plates considering construction load effect", Struct. Eng. Mech., 69(1), 1-10. https://doi.org/10.12989/sem.2019.69.1.001.
  25. Jain, S. and Yang, D.C.H. (1993), "Effects of feedrate and chisel edge on delamination in composites drilling", J. Eng. Ind., 115(4), 398-405. https://doi.org/10.1115/1.2901782.
  26. Jain, S. and Yang, D.C.H. (1994), "Delamination-free drilling of composite laminates", J. Eng. Ind., 116(4), 475-481. https://doi.org/10.1115/1.2902131.
  27. Khashaba, U.A., El-Sonbaty, I.A., Selmy, A.I. and Megahed, A.A. (2010), "Machinability analysis in drilling woven GFR/epoxy composites: Part I - Effect of machining parameters", Compos. Part A Appl. Sci. Manufact., 41(3), 391-400. https://doi.org/10.1016/j.compositesa.2009.11.006.
  28. Khashaba, U.A., El-Sonbaty, I.A., Selmy, A.I. and Megahed, A.A. (2010), "Machinability analysis in drilling woven GFR/epoxy composites: Part II - Effect of drill wear", Compos. Part A Appl. Sci. Manufact., 41(9), 1130-1137. https://doi.org/10.1016/j.compositesa.2010.04.011.
  29. Langella, A., Nele, L. and Maio, A. (2005), "A torque and thrust prediction model for drilling of composite materials", Compos. Part A Appl. Sci. Manufact., 36(1), 83-93. https://doi.org/10.1016/j.compositesa.2004.06.024.
  30. Liu, D., Tang, Y. and Cong, W.L. (2012), "A review of mechanical drilling for composite laminates", Compos. Struct., 94(4), 1265-1279. https://doi.org/10.1016/j.compstruct.2011.11.024.
  31. Marques, A.T., Durao, L.M., Magalhaes, A.G., Silva, J.F. and Tavares, J.M.R.S. (2009), "Delamination analysis of carbon fibre reinforced laminates: Evaluation of a special step drill", Compos. Sci. Technol., 69(14), 2376-2382. https://doi.org/10.1016/j.compscitech.2009.01.025.
  32. Mathew, J., Ramakrishnan, N. and Naik, N.K. (1999), "Investigations into the effect of geometry of a trepanning tool on thrust and torque during drilling of GFRP composites", J. Mater. Process. Technol., 91(1-3), 1-11. https://doi.org/10.1016/S0924-0136(98)00416-6.
  33. Ojo, S.O., Ismail, S.O., Paggi, M. and Dhakal, H.N. (2017), "A new analytical critical thrust force model for delamination analysis of laminated composites during drilling operation", Compos. Part B Eng., 124, 207-217. https://doi.org/10.1016/j.compositesb.2017.05.039.
  34. Persson, E., Eriksson, I. and Zackrisson, L. (1997), "Effects of hole machining defects on strength and fatigue life of composite laminates", Compos. Part A Appl. Sci. Manufact., 28(2), 141-151. https://doi.org/10.1016/S1359-835X(96)00106-6.
  35. Jain, S. and Yang, D.C. (1993), "Effects of feedrate and chisel edge on delamination in composite drilling", J. Eng. Ind., 115(4), 398-405. https://doi.org/10.1115/1.2901782.
  36. Jain, S. and Yang, D.C. (1994), "Delamination-free drilling of composite laminates", J. Eng. Ind., 116(4), 475-481. https://doi.org/10.1115/1.2902131.
  37. Sardinas, R.Q., Reis, P. and Davim, J.P. (2006), "Multi-objective optimization of cutting parameters for drilling laminate composite materials by using genetic algorithms", Compos. Sci. Technol., 66(15), 3083-3088. https://doi.org/10.1016/j.compscitech.2006.05.003.
  38. Singh, I., Bhatnagar, N. and Viswanath, P. (2008), "Drilling of uni-directional glass fiber reinforced plastics: Experimental and finite element study", Mater. Des., 29(2), 546-553. https://doi.org/10.1016/j.matdes.2007.01.029.
  39. Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill
  40. Tsao, C.C. (2006), "The effect of pilot hole on delamination when core drill drilling composite materials", Int. J. Machine Tools Manufact., 46(12-13), 1653-1661. https://doi.org/10.1016/j.ijmachtools.2005.08.015.
  41. Tsao, C.C. (2007), "Effect of deviation on delamination by saw drill", Int. J. Machine Tools Manufact., 47(7-8), 1132-1138. https://doi.org/10.1016/j.ijmachtools.2006.09.016.
  42. Tsao, C.C. (2007), "Effect of pilot hole on thrust force by saw drill", Int. J. Machine Tools Manufact., 47(14), 2172-2176. https://doi.org/10.1016/j.ijmachtools.2007.05.008.
  43. Tsao, C.C. (2008), "Prediction of thrust force of step drill in drilling composite material by Taguchi method and radial basis function network", Int. J. Adv. Manufact. Technol., 36(1-2), 11-18. https://doi.org/10.1007/s00170-006-0808-8.
  44. Tsao, C.C. (2012), "Effect of induced bending moment (IBM) on critical thrust force for delamination in step drilling of composites", Int. J. Machine Tools Manufact., 59, 1-5. https://doi.org/10.1016/j.ijmachtools.2012.03.001.
  45. Tsao, C.C. and Hocheng, H. (2005), "Effects of exit back-up on delamination in drilling composite materials using a saw drill and a core drill", Int. J. Machine Tools Manufact., 45(11), 1261-1270. https://doi.org/10.1016/j.ijmachtools.2005.01.015.
  46. Tsao, C.C. and Hocheng, H. (2007), "Parametric study on thrust force of core drill", J. Mater. Process. Technol., 192, 37-40. https://doi.org/10.1016/j.jmatprotec.2007.04.062.
  47. Tsao, C.C., Hocheng, H. and Chen, Y.C. (2012), "Delamination reduction in drilling composite materials by active backup force", CIRP Annals Manufact. Technol., 61(1), 91-94. https://doi.org/10.1016/j.cirp.2012.03.036.
  48. Tsao, C.C., Kuo, K.L. and Hsu, I.C. (2012), "Evaluation of a novel approach to a delamination factor after drilling composite laminates using a core-saw drill", Int. J. Adv. Manufact. Technol., 59(5), 617-622. https://doi.org/10.1007/s00170-011-3532-y.
  49. Zarif Karimi, N., Heidary, H. and Ahmadi, M. (2012), "Residual tensile strength monitoring of drilled composite materials by acoustic emission", Mater. Des., 40, 229-236. https://doi.org/10.1016/j.matdes.2012.03.040.
  50. Zarif Karimi, N., Heidary, H. and Minak, G. (2016), "Critical thrust and feed prediction models in drilling of composite laminates", Compos. Struct., 148, 19-26. https://doi.org/10.1016/j.compstruct.2016.03.059.
  51. Zarif Karimi, N., Minak, G. and Kianfar, P. (2015), "Analysis of damage mechanisms in drilling of composite materials by acoustic emission", Compos. Struct., 131, 107-114. https://doi.org/10.1016/j.compstruct.2015.04.025.
  52. Zhang, L.B., Wang, L.J. and Liu, X.Y. (2001), "A mechanical model for predicting critical thrust forces in drilling composite laminates", Proc. Inst. Mech. Eng. Part B J. Eng. Manufact., 215(2), 135-146. https://doi.org/10.1243%2F0954405011515235. https://doi.org/10.1243/0954405011515235