DOI QR코드

DOI QR Code

삼광 금-은 광상의 엽리상 석영맥에서 산출되는 백색운모와 철백운석의 산상 및 화학조성

Occurrence and Chemical Composition of White Mica and Ankerite from Laminated Quartz Vein of Samgwang Au-Ag Deposit, Republic of Korea

  • 유봉철 (한국지질자원연구원 DMR융합연구단)
  • Yoo, Bong Chul (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2020.02.20
  • 심사 : 2020.03.16
  • 발행 : 2020.03.31

초록

삼광 금-은 광상은 과거에 한국에서 가장 큰 금-은 광상들 중의 하나이다. 이 광상 주변지질은 선캠브리아기의 변성퇴적암류와 이를 부정합으로 피복한 쥐라기 백운사층으로 구성된다. 이 광상은 선캠브리아기의 변성퇴적암류내에 발달된 열극대를 충진한 8개조의 석영맥으로 구성된 조산형 금-은 광상이다. 이 광상에는 일반적으로 엽리상 석영맥이 관찰되며 석영, 철백운석, 백색운모, 녹니석, 인회석, 금홍석, 유비철석, 섬아연석, 황동석 및 방연석 등으로 구성된다. 엽리상 석영맥과 모암변질에서 산출되는 백색운모의 화학조성은 (K1.02-0.82Na0.02-0.00Ca0.00)(Al1.73-1.58Mg0.26-0.16Fe0.23-0.10Mn0.00Ti0.03-0.01Cr0.01-0.00)(Si3.35-3.22Al0.79-0.65)O10(OH)2 및 (K0.75-0.67Na0.01Ca0.00) (Al1.78-1.74Mg0.16-0.15Fe0.15-0.13Mn0.00Ti0.04-0.02Cr0.01-0.00)(Si3.33-3.26Al0.74-0.67)O10(OH)2로써 엽리상 석영맥에서 산출되는 백색운모에서 층간 양이온(K+Na+Ca)과 팔면체 자리에서의 Fe+Mg+Mn+Ti 함량이 높게 산출된다. 이 광상의 엽리상 석영맥에서 산출되는 백색운모의 화학조성 변화는 팬자이틱 또는 Tschermark 치환((Al3+)VI+(Al3+)IV <-> (Fe2+ 또는 Mg2+)VI+(Si4+)IV) 및 직접적인 (Fe3+)VI <-> (Al3+)VI 치환에 의해 일어났음을 알 수 있다. 엽리상 석영맥에서 산출되는 철백운석은 결정방향에 따라 서로 다른 상들이 교호하며 산출되며 이들 상들에서는 FeO 및 MgO 함량 변화가 관찰된다. 따라서 삼광 금-은 광상의 엽리상 석영맥 형성은 조산형 금은 광상의 형성 시 주 광화시기인 연성전단(ductile shear) 시기에 형성되었음을 알 수 있다.

The Samgwang deposit has been one of the largest deposits in Korea. The deposit consists of series of host rocks including Precambrian metasedimentary rocks and Jurassic Baegunsa formation, which unconformably overlies the Precambrian metasedimentary rocks. The deposit consists of eight lens-shaped quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock, which feature suggest that it is an orogenic-type deposit. Laminated quartz veins are common in the deposit which contain minerals including quartz, ankerite, white mica, chlorite, apatite, rutile, arsenopyrite, sphalerite, chalcopyrite and galena. The structural formulars of white micas from laminated quartz vein and wallrock alteration are determined to be (K1.02-0.82Na0.02-0.00Ca0.00)(Al1.73-1.58Mg0.26-0.16Fe0.23-0.10Mn0.00Ti0.03-0.01Cr0.01-0.00)(Si3.35-3.22Al0.79-0.65)O10(OH)2 and (K0.75-0.67Na0.01Ca0.00) (Al1.78-1.74Mg0.16-0.15Fe0.15-0.13Mn0.00Ti0.04-0.02Cr0.01-0.00)(Si3.33-3.26Al0.74-0.67)O10(OH)2, respectively. It suggest that white mica from laminated quartz vein has higher interlayer cation (K+Na+Ca) and Fe+Mg+Mn+Ti content in octahedral site compared to the white mica from the wallrock alteration. Compositional variations in white mica from laminated quartz vein can be caused by phengitic or Tschermark substitution ((Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI)+(Si4+)IV) and (Fe3+)VI <-> (Al3+)VI substitution. Ankerite from laminated quartz vein has compositional variations of FeO and MgO contents along crystal growth direction. The geochemical and textural features suggest that laminated quartz vein from the Samgwang gold-silver deposit was formed during ductile shear stage, which is an important main gold-silver ore-forming event in orogeinc deposit.

키워드

참고문헌

  1. Ayati, F., Yavuz, F., Noghreyan, M., Haroni, H.A. and Yavuz, R., 2008, Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province of Iran. Mineralogy and Petrology, 94, 107-122. https://doi.org/10.1007/s00710-008-0006-5
  2. Bargar, K.E. and Keith, T.E.C., 1999, Hydrothermal mineralogy of core from geothermal drill holes at Newberry volcano, Oregon. USGS professional paper 1578, 101p.
  3. Christie, A.B. and Brathwaite, R.L., 2003, Hydrothermal alteration in metasedimentary rock-hosted orogenic gold deposits, Reefton goldfield, South Island, New Zealand. Mineralium Deposita, 38, 87-107. https://doi.org/10.1007/s00126-002-0280-9
  4. Craw, D. and MacKenzie, D., 2016, Macraes orogenic gold deposit (New Zealand) Origin and development of a world class gold mine. Springer, 127p.
  5. Craw, D., Upton, P. and Mackenzie, D.J., 2009, Hydrothermal alteration styles in ancient and modern orogenic gold deposits, New Zealand. New Zealand Journal of Geology & Geophysics, 52, 11-26. https://doi.org/10.1080/00288300909509874
  6. Cohen, J.F., 2011, Compositional Variations in Hydrothermal White Mica and Chlorite from Wall-Rock Alteration at the Ann-Mason Porphyry Copper Deposit, Nevada. Master thesis, Oregon State University, Oregon, USA, 121p.
  7. Deer, W.A., Howie, R.A. and Zussman, J., 2003, Rockforming minerals, sheet silicates: Micas, 2, 308p.
  8. Dehnavi, A.S., McFarlane, C.R.M., Lentz, D.R., McClenaghan, S.H. and Walker, J.A., 2019, Chlorite-white mica pairs' composition as a micro-chemical guide to fingerprint massive sulfide deposits of the Bathurst mining camp, Canada. Minerals, 9,125. https://doi.org/10.3390/min9020125
  9. Dugdale, A.L., Wilson, C.J.L. and Squire, R.J., 2006, Hydrothermal alteration at the Magdala gold deposit, Stawell, western Victoria. Australian Journal of Earth Sciences, 53, 733-757. https://doi.org/10.1080/08120090600827421
  10. Gaillard, N., Williams-Jones, A.E., Clark, J.R., Lypaczewski, P., Salvi, S., Perrouty, S., Piette-Lauziere, N., Guilmette, C. and Linnen, R.L., 2018, Mica composition as a vector to gold mineralization: Deciphering hydrothermal and metamorphic effects in the Malartic district, Quebec. Ore Geology Reviews, 95, 789-820. https://doi.org/10.1016/j.oregeorev.2018.02.009
  11. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G. and Robert, F., 1998, Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13, 7-27. https://doi.org/10.1016/S0169-1368(97)00012-7
  12. Jimenez, T.R.A., 2011, Variation in hydrothermal muscovite and chlorite composition in the Highland valley porphyry Cu-Mo district, British Columbia, Canada. Master thesis, University of British Columbia, Vancouver, Canada, 233p.
  13. Kalliomäki, H., Wagner, T., Fusswinkel, T. and Schultze, D., 2019, Textural evolution and trace element chemistry of hydrothermal calcites from Archean gold deposits in the Hattu schist belt, eastern Finland: Indicators of the oreforming environment. Ore Geology Reviews, 112, 103006. https://doi.org/10.1016/j.oregeorev.2019.103006
  14. Lee, H.K., Yoo, B.C., Kim, K.W. and Choi, S.G., 1998, Mode of occurrence and chemical composition of electrums from the Samkwang gold-silver deposits, Korea. Journal of the Korean Institute of Mineral and Energy Resource Engineers, 35, 8-18.
  15. Lee, M.T., Shin, D.B., Yoo, B.C., Im, H.K., Park, S.J. and Choi, S.K., 2019, LA-ICP-MS trace element analysis of arsenopyrite from the Samgwang gold deposit, South Korea, and its genetic implications. Ore Geology Reviews, 114, 103147 https://doi.org/10.1016/j.oregeorev.2019.103147
  16. Li, X., Kwak, T.A.P. and Brown, R.W., 1998, Wallrock alteration in the Bendigo gold ore field, Victoria, Australia: Uses in exploration. Ore Geology Reviews, 13, 381-406. https://doi.org/10.1016/S0169-1368(97)00027-9
  17. Pearce, M.A., White, A.J.R., Fisher, L.A., Hough, R.M. and Cleverley, J.S., 2015, Gold deposition caused by carbonation of biotite during late-stage fluid flow. Lithos, 239, 114-127. https://doi.org/10.1016/j.lithos.2015.10.010
  18. Rieder, M., Cavazzini, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenhein, S., Koval, P.V., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R., 1999, Nomenclature of the micas. Mineralogical Magazine, 63, 267-279. https://doi.org/10.1180/minmag.1999.063.2.13
  19. Uribe-Mogollon, C. and Maher, K., 2018, White mica geochemistry of the Copper Cliff porphyry Cu deposit: Insights from a vectoring tool applied to exploration. Economic Geology, 113, 1269-1295. https://doi.org/10.5382/econgeo.2018.4591
  20. Wallace, C.J., 2016, Latite dikes, phyllic alteration and geochemical variations of micas at the copper flat hydrothermal system, Hillsboro, Sierra county, New Mexico, USA. Master thesis, New Mexico Institute of Mining and Technology, New Mexico, USA, 107p.
  21. Wang, R., Cudahy, T., Laukamp, C., Walshe, J.L., Bath, A., Mei, Y., Young, C., Roache, T.J., Jenkins, A., Roberts, M., Barker, A. and Laird, J., 2017, White mica as a hyperspectral tool in exploration for the Sunrise Dam and Kanowna Belle gold deposits, Western Australia. Economic Geology, 112, 1153-1176. https://doi.org/10.5382/econgeo.2017.4505
  22. Yoo, B.C., 2019, White mica and chemical composition of Samdeok Mo deposit, Republic of Korea. Journal of the Mineralogical Society of Korea, 32, 223-234. https://doi.org/10.9727/jmsk.2019.32.3.223
  23. Yoo, B.C., Lee, G.J., Lee, J.K., Ji, E.K. and Lee, H.K., 2009, Element dispersion and wallrock alteration from Samgwang deposit. Economic and Environmental Geology, 42, 177-193.
  24. Yoo, B.C., Lee, H.K. and Choi, S.G., 2002, Stable isotope, fluid inclusion and mineralogical studies of the Samkwang gold-silver deposits, Republic of Korea. Economic and Environmental Geology, 35, 299-316.
  25. Yoo, B.C., Lee, H.K. and White, N.C., 2010, Mineralogical, fluid inclusion, and stable isotope constraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)-a mesothermal, vein-hosted gold-silver deposit. Mineralium Deposita, 45, 161-187. https://doi.org/10.1007/s00126-009-0268-9
  26. Yoo, B.C., Tungalag, N., Sereenen, J., Heo, C.H., and Ko, S.M., 2014, Mineralogy and geochemistry of carbonate minerals from the Olon Ovoot gold mine, Mongolia. Economic and Environmental Geology, 47, 181-191. https://doi.org/10.9719/EEG.2014.47.2.181