DOI QR코드

DOI QR Code

Verification of Durability of Electromagnetic Metamaterial Absorber in Temperature Varying Environment for Its Application to Integrated Mast of Next-Generation Destroyer

차기구축함 통합마스트에 적용을 위한 전자기파 메타물질 흡수체의 온도 환경 내구성 검증

  • Ra, Young-Eun (LIG Nex1) ;
  • Kim, Yongjune (Center for Advanced Meta-Materials) ;
  • Jung, Hyun-June (Center for Advanced Meta-Materials) ;
  • Park, Pyoungwon (Department of Printed Electronics, Korea Institute of Machinery and Materials) ;
  • Jo, Jeongdai (Department of Printed Electronics, Korea Institute of Machinery and Materials) ;
  • Lee, Joonsik (Composite Research Division, Korea Institute of Materials Science) ;
  • Kim, Myungjoon (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jung, Joonkyo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Gun-Min (LIG Nex1) ;
  • Lee, Jong-Hak (LIG Nex1) ;
  • Lee, Hak-Joo (Center for Advanced Meta-Materials)
  • Received : 2020.03.14
  • Accepted : 2020.03.23
  • Published : 2020.03.31

Abstract

In this paper, the durability of an electromagnetic metamaterial absorber is verified in a temperature varying condition mimicking a maritime environment for the purpose of applying it to reduce the radar cross section of an integrated mast of the next-generation destroyer. To validate the durability, the reflectance of the electromagnetic metamaterial absorber was measured after storing it in a chamber that can control the temperature according to Procedure I of Method 501.7 included in MIL-STD-810H. Before and after the environmental test, both of the measured reflectances were retained less than -10 dB over the X band, that can guarantee the stealth functionality.

본 논문에서는 차기구축함에 탑재될 통합 마스트의 레이더 반사면적을 감소시킬 수 있는 스텔스 기술로 응용하기 위해 해양 환경이 모사된 온도 환경 조건에서 전자기파 메타물질 흡수체의 내구성을 검증하였다. 이를 위해 미국 군사 규격인 MIL-STD-810H의 Method 501.7 중 Procedure I 조건에 따라 주기적으로 온도를 조절할 수 있는 항온 챔버에 저장 후 전자기파 메타물질 흡수체의 반사도를 측정하였다. 고온 환경시험 전과 후 모두 X 밴드 전체에서 스텔스 성능을 충족시킬 수 있는 -10 dB 미만의 반사도가 확인되었다.

Keywords

References

  1. M. R. Meshram, N. K. Agrawal, B. Sinha, and P. S. Misra, "Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber," J. Magn. Magn. Mater., Vol.271, No.2-3, pp.207-214, 2004. DOI: 10.1016/j.jmmm.2003.09.045
  2. X. Liu, Z. Zhang, and Y. Wu, "Absorption properties of carbon black/silicon carbide microwave absorbers," Compos. B. Eng. Vol.42, No.2, pp.326-329, 2011. DOI: 10.1016/j.compositesb.2010.11.009
  3. W. W. Salisbury, "Absorbent body for electromagnetic waves," U.S. patent 1952.
  4. T. Li, K. Chen, G. Ding, J. Zhao, T. Jiang, and Y. Feng, "Optically transparent metasurface salisbury screen with wideband microwave absorption," Opt. Express Vol.26, No.26, pp.34384-34395, 2018. DOI: 10.1364/OE.26.034384
  5. C. Zhang, J. Yang, W. Cao, W. Yuan, J. Ke, L. Yang, Q. Cheng, and T. Cui, "Transparently curved metamaterial with broadband millimeter wave absorption," Photonics Res. Vol.7, No.4, pp.478-485, 2019. DOI: 10.1364/PRJ.7.000478
  6. Joonkyo Jung, Myungjoon Kim, Min Sung Heo, Yunseok Jang, Hyun-June Jung, Yongjune Kim, Tae In Choi, Ilsung Seo, Tae-Jin Je, Eun- Chae Jeon, Jeongdai Jo, Hak-Joo Lee, and Jonghwa Shin, "Microwave Stealth Fabricated on Flexible Film based on Multiresonance-type Metasurface," 2018 Naval Ship Technology Seminar & Naval Weapon System Symposium, p.65, 2018.
  7. Byeongjun An and Sangkui Seo, "A Study on the Setting Procedure of Standard Value and Design Target Value for the RCS Reduced Design for Naval Ships," The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol.26, No.6, pp.581-588, 2015. DOI: 10.5515/KJKIEES.2015.26.6.581
  8. C. Eyraud, J.-M. Geffrin, A. Litman and H. Tortel, "Complex permittivity determination from far-field scattering patterns," IEEE Antennas Wirel. Propag. Lett., Vol.14, pp.309-312, 2014. DOI: 10.1109/LAWP.2014.2362995
  9. T. Rovensky, P. Lukacs, and A. Pietrikova, "Dielectric properties of substrates for inkjet technology in GHz area," Period. Polytech. Electr. Eng. Comput. Sci., Vol.63, No.1, pp.9-15, 2019. DOI: 10.3311/PPee.13310
  10. J. A. Reedijk, H. C. F. Martens, B. J. G. Smits, and H. B. Brom, "Measurement of the complex dielectric constant down to helium temperatures. II. Quasioptical technique from 0.03 to 1 THz," Rev. Sci. Instrum., Vol.71, pp.478-481, 2000. DOI: 10.1063/1.1150227
  11. D. K. Cheng, Field and wave electromagnetics, Addison-Wesley, 1989.
  12. G. Tomaszewski, T. Walach, J. Potencki, and M. Pilecki, "The influence of sintering conditions on the inkjet printed paths resistance," International Journal of Electronics and Telecommunications, Vol.62, No.2, pp.135-140, 2016. DOI: 10.1515/eletel-2016-0018
  13. Department of Defense Test Method Standard, "Environmental Engineering Considerations and Laboratory Tests (MIL-STD-810H)," https://www.iest.org/Standards-RPs/MIL-STD-810H