DOI QR코드

DOI QR Code

Utilization of Elite Korean Japonica Rice Varieties for Association Mapping of Heading Time, Culm Length, and Amylose and Protein Content

  • Mo, Youngjun (National Institute of Crop Science, Rural Development Administration) ;
  • Jeong, Jong-Min (National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Bo-Kyeong (National Institute of Crop Science, Rural Development Administration) ;
  • Kwon, Soon-Wook (Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Jeung, Ji-Ung (National Institute of Crop Science, Rural Development Administration)
  • 투고 : 2020.01.04
  • 심사 : 2020.01.29
  • 발행 : 2020.03.01

초록

Association mapping is widely used in rice and other crops to identify genes underlying important agronomic traits. Most association mapping studies use diversity panels comprising accessions with various geographical origins to exploit their wide genetic variation. While locally adapted breeding lines are rarely used in association mapping owing to limited genetic diversity, genes/alleles identified from elite germplasm are practically valuable as they can be directly utilized in breeding programs. In this study, we analyzed genetic diversity of 179 rice varieties (161 japonica and 18 Tongil-type) released in Korea from 1970 to 2006 using 192 microsatellite markers evenly distributed across the genome. The 161 japonica rice varieties were genetically very close to each other with limited diversity as they were developed mainly through elite-by-elite crosses to meet the specific local demands for high quality japonica rice in Korea. Despite the narrow genetic background, abundant phenotypic variation was observed in heading time, culm length, and amylose and protein content in the 161 japonica rice varieties. Using these varieties in association mapping, we identified six, seven, ten, and four loci significantly associated with heading time, culm length, and amylose and protein content, respectively. The sums of allelic effects of these loci showed highly significant positive correlation with the observed phenotypic values for each trait, indicating that the allelic variation at these loci can be useful when designing cross combinations and predicting progeny performance in local breeding programs.

키워드

참고문헌

  1. AOAC. 1996. Official methods of analysis of AOAC International. Gaithersburg, MD: AOAC International.
  2. Awika, J. M., V. Piironen, and S. Bean. 2011. Advances in cereal science: implications to food processing and health promotion. Washington D.C.: American Chemical Society.
  3. Bao, J., X. Zhou, F. Xu, Q. He, and Y. Park. 2017. Genome-wide association study of the resistant starch content in rice grains. Starch 69 : 1600343. https://doi.org/10.1002/star.201600343
  4. Begum, H., J. E. Spindel, A. Lalusin, T. Borromeo, G. Gregorio, J. Hernandez, P. Virk, B. Collard, and S. R. McCouch. 2015. Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa). PLoS One 10 : e0119873. https://doi.org/10.1371/journal.pone.0119873
  5. Bradbury, P. J., Z. Zhang, D. E. Kroon, T. M. Casstevens, Y. Ramdoss, and E. S. Buckler. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23 : 2633-2635. https://doi.org/10.1093/bioinformatics/btm308
  6. Bryant, R. J., A. K. Jackson, K. M. Yeater, W. G. Yan, A. M. McClung, and R. G. Fjellstrom. 2013. Genetic variation and association mapping of protein concentration in brown rice using a diverse rice germplasm collection. Cereal Chemistry Journal 90 : 445-452. https://doi.org/10.1094/CCHEM-09-12-0122-R
  7. Chung, G. S. and M. H. Heu. 1991. Improvement of Tongil-type rice cultivars from indica/japonica hybridization in Korea. In: Bajaj YPS (ed.) Rice. Heidelberg, Germany: Springer-Verlag Berlin, pp. 105-112.
  8. Collard, B. C. Y., M. Z. Z. Jahufer, J. B. Brouwer, and E. C. K. Pang. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142 : 169-196. https://doi.org/10.1007/s10681-005-1681-5
  9. Collard, B. C. and D. J. Mackill. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 363 : 557-572. https://doi.org/10.1098/rstb.2007.2170
  10. Fujino, K., M. Obara, T. Shimizu, K. O. Koyanagi, and T. Ikegaya. 2015. Genome-wide association mapping focusing on a rice population derived from rice breeding programs in a region. Breeding Science 65 : 403-410. https://doi.org/10.1270/jsbbs.65.403
  11. Huang, N., E. R. Angeles, J. Domingo, G. Magpantay, S. Singh, G. Zhang, N. Kumaravadivel, J. Bennett, and G. S. Khush. 1997. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theoretical and Applied Genetics 95 : 313-320. https://doi.org/10.1007/s001220050565
  12. Huang, X., X. Wei, T. Sang, Q. Zhao, Q. Feng, Y. Zhao, C. Li, C. Zhu, T. Lu, Z. Zhang, M. Li, D. Fan, Y. Guo, A. Wang, L. Wang, L. Deng, W. Li, Y. Lu, Q. Weng, K. Liu, T. Huang, T. Zhou, Y. Jing, W. Li, Z. Lin, E. S. Buckler, Q. Qian, Q. Zhang, J. Li, and B. Han. 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics 42 : 961-967. https://doi.org/10.1038/ng.695
  13. Huang, X., Y. Zhao, X. Wei, C. Li, A. Wang, Q. Zhao, W. Li, Y. Guo, L. Deng, C. Zhu, D. Fan, Y. Lu, Q. Weng, K. Liu, T. Zhou, Y. Jing, L. Si, G. Dong, T. Huang, T. Lu, Q. Feng, Q. Qian, J. Li, and B. Han. 2012. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics 44 : 32-39. https://doi.org/10.1038/ng.1018
  14. Jia, L., W. Yan, C. Zhu, H. A. Agrama, A. Jackson, K. Yeater, X. Li, B. Huang, B. Hu, A. McClung, and D. Wu. 2012. Allelic analysis of sheath blight resistance with association mapping in rice. PLoS One 7 : e32703. https://doi.org/10.1371/journal.pone.0032703
  15. Juliano, B. O. 1971. A simplified assay for milled rice amylose. Cereal Science Today 16 : 334-360.
  16. Kwon, S. J., S. N. Ahn, H. C. Hong, Y. K. Kim, H. G. Hwang, H. C. Choi, and H. P. Moon. 1999. Genetic diversity of Korean japonica rice cultivars. Korean Journal of Breeding Science 31 : 268-275 (in Korean with English abstract).
  17. Lee, C. M., H. S. Park, M. K. Baek, J. P. Suh, C. S. Kim, K. M. Lee, S. G. Park, and Y. C. Cho. 2019. Characterization of grain-related traits of 300 Korean rice varieties. Presented at the 2019 Korean Society of Breeding Science (KSBS) & Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO) international conference on plant breeding for sustainable development, Gwangju, Republic of Korea, 2-5 July 2019.
  18. Li, G., Y. Na, S. Kwon, and Y. Park. 2014. Association analysis of seed longevity in rice under conventional and high-temperature germination conditions. Plant Systematics and Evolution 300 : 389-402. https://doi.org/10.1007/s00606-013-0889-4
  19. Li, X., W. Yan, H. Agrama, L. Jia, A. Jackson, K. Moldenhauer, K. Yeater, A. McClung, and D. Wu. 2012. Unraveling the complex trait of harvest index with association mapping in rice (Oryza sativa L.). PLoS One 7 : e29350. https://doi.org/10.1371/journal.pone.0029350
  20. Li, X., W. Yan, H. Agrama, L. Jia, X. Shen, A. Jackson, K. Moldenhauer, K. Yeater, A. McClung, and D. Wu. 2011. Mapping QTLs for improving grain yield using the USDA rice mini-core collection. Planta 234 : 347-361. https://doi.org/10.1007/s00425-011-1405-0
  21. Liu, K. and S. V. Muse. 2005. PowerMarker : an integrated analysis environment for genetic marker analysis. Bioinformatics 21 : 2128-2129. https://doi.org/10.1093/bioinformatics/bti282
  22. McCouch, S. R., L. Teytelman, Y. Xu, K. B. Lobos, K. Clare, M. Walton, B. Fu, R. Maghirang, Z. Li, Y. Xing, Q. Zhang, I. Kono, M. Yano, R. Fjellstrom, G. DeClerck, D. Schneider, S. Cartinhour, D. Ware, and L. Stein. 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research 9 : 199-207. https://doi.org/10.1093/dnares/9.6.199
  23. McCouch, S. R., M. H. Wright, C. Tung, L. G. Maron, K. L. McNally, M. Fitzgerald, N. Singh, G. DeClerck, F. Agosto-Perez, P. Korniliev, A. J. Greenberg, M. E. B. Naredo, S. M. Q. Mercado, S. E. Harrington, Y. Shi, D. A. Branchini, P. R. Kuser-Falcão, H. Leung, K. Ebana, M. Yano, G. Eizenga, A. McClung, and J. Mezey. 2016. Open access resources for genome-wide association mapping in rice. Nature Communications 7 : 10532. https://doi.org/10.1038/ncomms10532
  24. Mo, Y., J. Jeung, Y. Shin, C. Park, K. Kang, and B. Kim. 2013. Agronomic and genetic analysis of Suweon 542, a rice floury mutant line suitable for dry milling. Rice 6 : 37. https://doi.org/10.1186/1939-8433-6-37
  25. Murray, M. G. and W. F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8 : 4321-4326. https://doi.org/10.1093/nar/8.19.4321
  26. Myles, S., J. Peiffer, P. J. Brown, E. S. Ersoz, Z. Zhang, D. E. Costich, and E. S. Buckler. 2009. Association mapping : critical considerations shift from genotyping to experimental design. Plant Cell 21 : 2194-2202. https://doi.org/10.1105/tpc.109.068437
  27. Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155 : 945-959. https://doi.org/10.1093/genetics/155.2.945
  28. RDA. 2003. Manual for standard evaluation method in agricultural experiment and research. Suwon, Korea : Rural Development Administration.
  29. Shibaya, T., K. Hori, E. Ogiso-Tanaka, U. Yamanouchi, K. Shu, N. Kitazawa, A. Shomura, T. Ando, K. Ebana, J. Wu, T. Yamazaki, and M. Yano. 2016. Hd18, encoding histone acetylase related to Arabidopsis FLOWERING LOCUS D, is involved in the control of flowering time in rice. Plant Cell and Physiology 57 : 1828-1838. https://doi.org/10.1093/pcp/pcw105
  30. Schlappi, M. R., A. K. Jackson, G. C. Eizenga, A. Wang, C. Chu, Y. Shi, N. Shimoyama, and D. L. Boykin. 2017. Assessment of five chilling tolerance traits and GWAS mapping in rice using the USDA mini-core collection. Frontiers in Plant Science 8 : 957. https://doi.org/10.3389/fpls.2017.00957
  31. Shinada, H., T. Yamamoto, H. Sato, E. Yamamoto, K. Hori, J. Yonemaru, T. Sato, and K. Fujino. 2015. Quantitative trait loci for rice blast resistance detected in a local rice breeding population by genome-wide association mapping. Breeding Science 65 : 388-395. https://doi.org/10.1270/jsbbs.65.388
  32. Song, M., J. Lee, Y. Cho, Y. Jeon, S. Lee, J. Ku, S. Choi, and H. Hwang. 2002. Narrow genetic background of Korean rice germplasm as revealed by DNA fingerprinting with SSR markers and their pedigree information. Korean Journal of Genetics 24 : 397-403.
  33. Tester, M. and P. Langridge. 2010. Breeding technologies to increase crop production in a changing world. Science 327 : 818-822. https://doi.org/10.1126/science.1183700
  34. Verdeprado, H., T. Kretzschmar, H. Begum, C. Raghavan, P. Joyce, P. Lakshmanan, J. N. Cobb, and B. C. Y. Collard. 2018. Association mapping in rice : basic concepts and perspectives for molecular breeding. Plant Production Science 21 : 159-176. https://doi.org/10.1080/1343943X.2018.1483205
  35. Wang, Z., F. Zheng, G. Shen, J. Gao, D. P. Snustad, M. Li, J. Zhang, and M. Hong. 1995. The amylose content in rice endosperm is related to the post‐transcriptional regulation of the waxy gene. Plant Journal 7 : 613-622. https://doi.org/10.1046/j.1365-313X.1995.7040613.x
  36. Wu, W., X. Zheng, G. Lu, Z. Zhong, H. Gao, L. Chen, C. Wu, H. Wang, Q. Wang, K. Zhou, J. Wang, F. Wu, X. Zhang, X. Guo, Z. Cheng, C. Lei, Q. Lin, L. Jiang, H. Wang, S. Ge, and J. Wan. 2013 Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proceedings of the National Academy of Sciences of the United States of America 110 : 2775-2780.
  37. Xu, F., J. Bao, T. Kim, and Y. Park. 2016. Genome-wide association mapping of polyphenol contents and antioxidant capacity in whole-grain rice. Journal of Agricultural and Food Chemistry 64 : 4695-4703. https://doi.org/10.1021/acs.jafc.6b01289
  38. Yano, K., E. Yamamoto, K. Aya, H. Takeuchi, P. Lo, L. Hu, M. Yamasaki, S. Yoshida, H. Kitano, K. Hirano, and M. Matsuoka. 2016. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetics 48 : 927-934. https://doi.org/10.1038/ng.3596
  39. Yano, M., Y. Katayose, M. Ashikari, U. Yamanouchi, L. Monna, T. Fuse, T. Baba, K. Yamamoto, Y. Umehara, Y. Nagamura, and T. Sasaki. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12 : 2473-2483. https://doi.org/10.1105/tpc.12.12.2473
  40. Zhang, P., K. Zhong, M. Q. Shahid, and H. Tong. 2016. Association analysis in rice : from application to utilization. Frontiers in Plant Science 7 :1202.
  41. Zhao, W., J. Chung, S. Kwon, J. Lee, K. Ma, and Y. Park. 2013. Association analysis of physicochemical traits on eating quality in rice (Oryza sativa L.). Euphytica 191 : 9-21. https://doi.org/10.1007/s10681-012-0820-z
  42. Zhu, L., J. Hu, K. Zhu, Y. Fang, Z. Gao, Y. He, G. Zhang, L. Guo, D. Zeng, G. Dong, M. Yan, J. Liu, and Q. Qian. 2011. Identification and characterization of SHORTENED UPPERMOST INTERNODE 1, a gene negatively regulating uppermost internode elongation in rice. Plant Molecular Biology 77 : 475. https://doi.org/10.1007/s11103-011-9825-6

피인용 문헌

  1. 국내 육성 벼 품종 입형 관련 특성 분석 vol.65, pp.3, 2020, https://doi.org/10.7740/kjcs.2020.65.3.199
  2. Development of 454 New Kompetitive Allele-Specific PCR (KASP) Markers for Temperate japonica Rice Varieties vol.9, pp.11, 2020, https://doi.org/10.3390/plants9111531
  3. Hd1 Allele Types and Their Associations with Major Agronomic Traits in Korean Rice Cultivars vol.10, pp.11, 2020, https://doi.org/10.3390/plants10112408