References
- Aue, A., Horvath, L., and Pellatt, D. F. (2017). Functional generalized autoregressive conditional heteroskedasticity, Journal of Time Series Analysis, 38, 3-21. https://doi.org/10.1111/jtsa.12192
- Conway, J. B. (1994). A Course in Functional Analysis, Springer, New York.
- Hadjipantelis, Dai, Ji, Han, Muller, and Wang (2017). Functional PCA in R, R manual.
- Hormann, S., Horvath, L., and Reeder, R. (2013). A functional version of the ARCH model, Econometric Theory, 29, 267-288. https://doi.org/10.1017/S0266466612000345
- Horvath, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications, Springer.
- Kim, J.-M. and Hwang, S. Y. (2020). Functional ARCH directional dependence via copula for intraday volatility based on high-frequency financial time series, Applied Economics, online published.
- Ramsay, J. O. and Silverman, B. W. (1997). Functional Data Analysis, Springer, New York.
- Ramsay, J. O. and Silverman, B. W. (2002). Applied Functional Data Analysis, Springer, New York.
- Ramsay, J. O., Hooker, G. and Silverman, B.W. (2009). Functional Data Analysis with R and MATLAB, Springer, New York.
- Rao, C. R. (1958). Some statistical methods for comparison of growth curves, Biometrics, 14, 1-17. https://doi.org/10.2307/2527726
- Rao, C. R. (1987). Prediction in growth curve models (with discussion), Statistical Science, 2, 434-471. https://doi.org/10.1214/ss/1177013119
- Tucker, L. R. (1958) Determination of parameters of a functional relationship by factor analysis, Psychometrika, 23, 19-23. https://doi.org/10.1007/BF02288975
- Wang, J. L., Chiou, J. M., and Muller, H. G. (2016). Functional data analysis, Annual Review of Statistics and Its Application, 3, 257-295. https://doi.org/10.1146/annurev-statistics-041715-033624
- Yao, F., Muller, H. G., and Wang, J. L. (2005). Functional data analysis for sparse longitudinal data, Journal of the American Statistical Association, 100, 577-590. https://doi.org/10.1198/016214504000001745
- Yoon, J. E., Kim, J. M., and Hwang, S. Y. (2017). Functional ARCH (fARCH) for high-frequency time series: illustration, Korean Journal of Applied Statistics, 30, 983-991. https://doi.org/10.5351/KJAS.2017.30.6.983