References
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
- Choi, M. S., Park, J. A., and Hwang, S. Y. (2012). Asymmetric GARCH processes featuring both threshold effect and bilinear structure, Statistics & Probability Letters, 82, 419-426. https://doi.org/10.1016/j.spl.2011.11.023
- Chung, S. A. and Hwang, S. Y. (2017). A profile Godambe information of power transformations for ARCH time series, Communications in Statistics: Theory and Methods, 46, 6899-6908. https://doi.org/10.1080/03610926.2016.1139133
- Engle, R. F. and Ng, V. K. (1993). Measuring and testing the impact of news on volatility, Journal of Finance, 48, 1749-1778. https://doi.org/10.1111/j.1540-6261.1993.tb05127.x
- Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks, The Journal of Finance, 48, 1779-1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
- Hansen, P. R. and Lunde, A. (2005). A forecast comparison of volatility models: does anything beat a GARCH (1,1)?, Journal of Applied Econometrics, 20, 873-889. https://doi.org/10.1002/jae.800
- Hwang, S. Y. and Basawa, I. V. (2004). Stationarity and moment structure for Box-Cox transformed threshold GARCH(1,1) processes, Statistics & Probability Letters, 68, 209-220. https://doi.org/10.1016/j.spl.2003.08.016
- Hwang, S. Y., Basawa, I. V., Choi, M. S., and Lee, S. D. (2014). Non-ergodic martingale estimating functions and related asymptotics, Statistics, 48, 487-507. https://doi.org/10.1080/02331888.2012.748772
- Hwang, S. Y., Baek, J. S., Park, J. A., and Choi, M. S. (2010). Explosive volatilities for threshold-GARCH processes generated by asymmetric innovations, Statistics & Probability Letters, 80, 26-33. https://doi.org/10.1016/j.spl.2009.09.008
- Hwang, S, Y., and Kim, T. Y. (2004). Power transformation and threshold modeling for ARCH innovations with applications to tests for ARCH structure, Stochastic Processes and their Applications, 110, 295-314. https://doi.org/10.1016/j.spa.2003.11.001
- Hwang, S, Y., Kim, S., Lee, S. D., and Basawa, I. V. (2007). Generalized least squares estimation for explosive AR(1) processes with conditionally heteroscedastic errors, Statistics & Probability Letters, 77, 1439-1448. https://doi.org/10.1016/j.spl.2007.02.010
- Kim, J. Y. and Hwang, S. Y. (2018), A threshold-asymmetric realized volatility for high frequency financial time series, Korean Journal of Applied Statistics, 31, 205-216. https://doi.org/10.5351/KJAS.2018.31.2.205
- Lee, J. W., Yoon, J. E., and Hwang, S. Y. (2013). A graphical improvement in volatility analysis for financial series, Korean Journal of Applied Statistics, 26, 785-796. https://doi.org/10.5351/KJAS.2013.26.5.785
- Nelson, D. B. (1990). Stationarity and persistence in the GARCH(1, 1) model, Econometric Theory, 6, 318-334 https://doi.org/10.1017/S0266466600005296
- Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach, Econometrica, 59, 347-370. https://doi.org/10.2307/2938260
- Park, J. A., Baek, J. S., and Hwang, S. Y. (2009). Persistent threshold-GARCH processes: Model and application, Statistics & Probability Letters, 79, 907-914. https://doi.org/10.1016/j.spl.2008.11.018
- Rabemananjara, R. and Zakoian, J. M. (1993). Threshold ARCH models and asymmetries in volatility, Journal of Applied Econometrics, 8, 31-49. https://doi.org/10.1002/jae.3950080104
- Terasvirta, T. (2009). An introduction to univariate GARCH models, in Handbook of Financial Time Series, 17-42, Eds., Andersen, T. G., Davis, R. A., Kreiss, J. P. and Mikosch, T., Springer, Berlin.
- Tsay, R. S. (2010). Analysis of Financial Time Series (3rd ed), Wiley, New York.