DOI QR코드

DOI QR Code

Volatility-nonstationary GARCH(1,1) models featuring threshold-asymmetry and power transformation

분계점 비대칭과 멱변환 특징을 가진 비정상-변동성 모형

  • Choi, Sun Woo (Department of Statistics, Sookmyung Women's University) ;
  • Hwang, Sun Young (Department of Statistics, Sookmyung Women's University) ;
  • Lee, Sung Duck (Department of Information and Statistics, Chungbuk National University)
  • 최선우 (숙명여자대학교 통계학과) ;
  • 황선영 (숙명여자대학교 통계학과) ;
  • 이성덕 (충북대학교 정보통계학과)
  • Received : 2020.09.22
  • Accepted : 2020.10.05
  • Published : 2020.12.31

Abstract

Contrasted with the standard symmetric GARCH models, we consider a broad class of threshold-asymmetric models to analyse financial time series exhibiting asymmetric volatility. By further introducing power transformations, we add more flexibilities to the asymmetric class, thereby leading to power transformed and asymmetric volatility models. In particular, the paper is concerned with the nonstationary volatilities in which conditions for integrated volatility and explosive volatility are separately discussed. Dow Jones Industrial Average is analysed for illustration.

본 논문에서는 금융시계열의 특징인 비대칭 변동성을 연구하고 있다. 멱변환을 동시에 고려한 멱변환-비대칭 GARCH 모형을 소개하고 있다. 변동성이 비정상인 모형을 다루고 있으며 오차항으로 표준정규분포와 더불어 표준화 t-분포도 고려하여 변동성 정상/비정상 조건을 제시하고 있다. 미국 주가 시계열인 다우지수 적용사례를 예시하였다.

Keywords

References

  1. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
  2. Choi, M. S., Park, J. A., and Hwang, S. Y. (2012). Asymmetric GARCH processes featuring both threshold effect and bilinear structure, Statistics & Probability Letters, 82, 419-426. https://doi.org/10.1016/j.spl.2011.11.023
  3. Chung, S. A. and Hwang, S. Y. (2017). A profile Godambe information of power transformations for ARCH time series, Communications in Statistics: Theory and Methods, 46, 6899-6908. https://doi.org/10.1080/03610926.2016.1139133
  4. Engle, R. F. and Ng, V. K. (1993). Measuring and testing the impact of news on volatility, Journal of Finance, 48, 1749-1778. https://doi.org/10.1111/j.1540-6261.1993.tb05127.x
  5. Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks, The Journal of Finance, 48, 1779-1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
  6. Hansen, P. R. and Lunde, A. (2005). A forecast comparison of volatility models: does anything beat a GARCH (1,1)?, Journal of Applied Econometrics, 20, 873-889. https://doi.org/10.1002/jae.800
  7. Hwang, S. Y. and Basawa, I. V. (2004). Stationarity and moment structure for Box-Cox transformed threshold GARCH(1,1) processes, Statistics & Probability Letters, 68, 209-220. https://doi.org/10.1016/j.spl.2003.08.016
  8. Hwang, S. Y., Basawa, I. V., Choi, M. S., and Lee, S. D. (2014). Non-ergodic martingale estimating functions and related asymptotics, Statistics, 48, 487-507. https://doi.org/10.1080/02331888.2012.748772
  9. Hwang, S. Y., Baek, J. S., Park, J. A., and Choi, M. S. (2010). Explosive volatilities for threshold-GARCH processes generated by asymmetric innovations, Statistics & Probability Letters, 80, 26-33. https://doi.org/10.1016/j.spl.2009.09.008
  10. Hwang, S, Y., and Kim, T. Y. (2004). Power transformation and threshold modeling for ARCH innovations with applications to tests for ARCH structure, Stochastic Processes and their Applications, 110, 295-314. https://doi.org/10.1016/j.spa.2003.11.001
  11. Hwang, S, Y., Kim, S., Lee, S. D., and Basawa, I. V. (2007). Generalized least squares estimation for explosive AR(1) processes with conditionally heteroscedastic errors, Statistics & Probability Letters, 77, 1439-1448. https://doi.org/10.1016/j.spl.2007.02.010
  12. Kim, J. Y. and Hwang, S. Y. (2018), A threshold-asymmetric realized volatility for high frequency financial time series, Korean Journal of Applied Statistics, 31, 205-216. https://doi.org/10.5351/KJAS.2018.31.2.205
  13. Lee, J. W., Yoon, J. E., and Hwang, S. Y. (2013). A graphical improvement in volatility analysis for financial series, Korean Journal of Applied Statistics, 26, 785-796. https://doi.org/10.5351/KJAS.2013.26.5.785
  14. Nelson, D. B. (1990). Stationarity and persistence in the GARCH(1, 1) model, Econometric Theory, 6, 318-334 https://doi.org/10.1017/S0266466600005296
  15. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach, Econometrica, 59, 347-370. https://doi.org/10.2307/2938260
  16. Park, J. A., Baek, J. S., and Hwang, S. Y. (2009). Persistent threshold-GARCH processes: Model and application, Statistics & Probability Letters, 79, 907-914. https://doi.org/10.1016/j.spl.2008.11.018
  17. Rabemananjara, R. and Zakoian, J. M. (1993). Threshold ARCH models and asymmetries in volatility, Journal of Applied Econometrics, 8, 31-49. https://doi.org/10.1002/jae.3950080104
  18. Terasvirta, T. (2009). An introduction to univariate GARCH models, in Handbook of Financial Time Series, 17-42, Eds., Andersen, T. G., Davis, R. A., Kreiss, J. P. and Mikosch, T., Springer, Berlin.
  19. Tsay, R. S. (2010). Analysis of Financial Time Series (3rd ed), Wiley, New York.