DOI QR코드

DOI QR Code

Metal-organic Chemical Vapor Deposition of Uniform Transition Metal Dichalcogenides Single Layers and Heterostructures

유기금속화학기상증착법을 이용한 전이금속 칼코게나이드 단일층 및 이종구조 성장

  • Jang, Suhee (Division of Materials Science and Engineering, Hanyang University) ;
  • Shin, Jae Hyeok (Division of Materials Science and Engineering, Hanyang University) ;
  • Park, Won Il (Division of Materials Science and Engineering, Hanyang University)
  • 장수희 (한양대학교 신소재공학과) ;
  • 신재혁 (한양대학교 신소재공학과) ;
  • 박원일 (한양대학교 신소재공학과)
  • Received : 2020.12.19
  • Accepted : 2020.12.29
  • Published : 2020.12.30

Abstract

Transition metal dichalcogenides (TMDCs), two-dimensional atomic layered materials with direct bandgap in the range of 1.1-2.1 eV, have attracted a lot of research interest due to their high response to light and capability to build new types of artificial heterostructures. However, the large-area synthesis of high-quality and uniform TMDC films with vertical-stacked heterostructure still remains challenge. In this study, we have developed a metal-organic chemical vapor deposition (MOCVD) system for TMDCs and conducted a systematic study on the growth of single-layer TMDCs and their heterostructures. In particular, using a bubbler-type organometallic compound sources, the concentration and flow rate of each source can be precisely controlled to obtain uniformly single-layered MoS2 and WS2 films over the centimeter scale. In addition, the MoS2/WS2 vertical heterostructure was achieved by growing WS2 film directly on the MoS2 film, as confirmed by electron microscopy, UV-visible spectrophotometer, Raman spectroscopy, and photoluminescence spectroscopy.

1.1~2.1eV의 직접 천이형 밴드갭을 가지는 전이금속 칼코게나이드(Transition Metal Dichalcogenide, TMDC)는 빛에 대한 반응성이 크고 구조적 특징상 2차원 물질들과의 수직 이종접합구조를 형성하기 용이하다는 장점으로 차세대 광전소자와 반도체소자 물질로서 대두되고 있다. 하지만 TMDC를 얻는 공정들의 한계로 인해 고품질, 대면적의 수직이종접합구조의 형성에 어려움이 존재한다. 본 연구에서는 MOCVD 시스템을 제작하고, 단일층 TMDC 및 이들의 이종구조에 제조에 대한 연구를 수행하였다. 특히, 버블러 타입의 유기금속화합물 소스를 활용하여, 반응기 내로 유입되는 소스의 농도와 유량을 정밀하게 조절함으로써 전면적으로 균일한 박막을 얻을 수 있다. MOCVD로 MoS2, WS2 박막을 성장시키고 주사전자현미경, UV-visible spectrophotometer, Raman spectroscopy, photoluminescence 분석을 진행하여 균일한 박막을 성장시켰음을 확인하였다. 또한, MoS2 박막에 WS2 박막을 직접 성장시킴으로써 MoS2/WS2 수직 이종접합구조를 형성하였다.

Keywords

References

  1. S. H. Kim, J. Jiang, S. Jang, J. H. Lee, D. W. Yang, W. J. Chang, J. H. Shin, N. Oh, J. Kim, R. Pachter, and W. I. Park, "Fast synthesis of large-scale single-crystal graphene with well-defined edges upon sodium chloride addition", Carbon, 158, 904 (2020). https://doi.org/10.1016/j.carbon.2019.11.080
  2. S. H. Kim, J. H. Lee, J. S. Park, M. S. Hwang, H. G. Park, K. J. Choi, and W. I. Park, "Performance optimization in gatetunable Schottky junction solar cells with a light transparent and electric-field permeable graphene mesh on n-Si", Journal of Materials Chemistry C, 5, 3183 (2017). https://doi.org/10.1039/C6TC05502H
  3. J. H. Shin, S. H. Kim, S. S. Kwon, and W. I. Park, "Direct CVD growth of graphene on three-dimensionally-shaped dielectric substrates", Carbon, 129, 785 (2018). https://doi.org/10.1016/j.carbon.2017.12.097
  4. S. W. Bang, H. K. Rho, H. J. Bae, S. J. Kang, and J. S. Ha, "Improvement of electrochemical reduction characteristics of carbon dioxide at porous copper electrode using graphene", J. Microelectron. Packag. Soc., 25(4), 105 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.105
  5. J. H. Lee, J. H. Shin, S. I. Lee, and W. I. Park, "Review on electric-field transparent conduct electrodes based on nanomaterials", J. Microelectron. Packag. Soc., 27(1), 9 (2020).
  6. J. Kang, S. Tongay, J. Zhou, J. B. Li, and J. Q. Wu, "Band offsets and heterostructures of two-dimensional semiconductors", Appl. Phys. Lett., 102(1), 012111 (2013). https://doi.org/10.1063/1.4774090
  7. J. Li, Y. L. Zhong, and D. Zhang, "Excitons in monolayer transition metal dichalcogenides", Journal of Physics: Condensed Matter, 27(31), 315301 (2015). https://doi.org/10.1088/0953-8984/27/31/315301
  8. M. M. Luo, T. J. Fan, Y. Zhou, H. Zhang, and L. Mei, "2D Black Phosphorus-Based Biomedical Applications", Advanced Functional Materials, 29(13), 1808306 (2019). https://doi.org/10.1002/adfm.201808306
  9. J. L. Zhao, J. J. Zhu, R. Cao, H. D. Wang, Z. N. Guo, D. K. Sang, J. N. Tang, D. Y. Fan, J. Q. Li, and H. Zhang, "Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus", Nature communications, 10(1), 1 (2019). https://doi.org/10.1038/s41467-018-07882-8
  10. M. J. Cui, S. M. Ren, J. Chen, S. Liu, G. G. Zhang, H. C. Zhao, L. P. Wang & Q. J. Xue, "Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets", Appl Surf Sci, 397, 77-86 (2017). https://doi.org/10.1016/j.apsusc.2016.11.141
  11. R. Kumar, S. Sahoo, E. Joanni, R. K. Singh, R. M. Yadav, R. K. Verma, D. P. Singh, W. K. Tan, A. P. del Pino, S. A. Moshkalev, and A. Matsuda, "A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives", Nano Research, 12, 2655 (2019). https://doi.org/10.1007/s12274-019-2467-8
  12. R. Z. Wang, D. G. Purdie, Y. Fan, F. C. P. Massabuau, P. Braeuninger-Weimer, O. J. Burton, R. Blurne, R. Schloegl, A. Lombardo, R. S. Weatherup, and S. Hofmann, "A Peeling Approach for Integrated Manufacturing of Large Monolayer h-BN Crystals", Acs Nano, 13, 2114 (2019). https://doi.org/10.1021/acsnano.8b08712
  13. A. Avsar, J. Y. Tan, X. Luo, K. H. Khoo, Y. T. Yeo, K. Watanabe, T. Taniguchi, S. Y. Quek, and B. Ozyilmaz, "van der Waals Bonded Co/h-BN Contacts to Ultrathin Black Phosphorus Devices", Nano Lett., 17, 5361 (2017). https://doi.org/10.1021/acs.nanolett.7b01817
  14. H. A. Chen, W. C. Chen, H. Sun, C. C. Lin, and S. Y. Lin, "Scalable MoS2/graphene hetero-structures grown epitaxially on sapphire substrates for phototransistor applications", Semiconductor Science and Technology, 33(2), 025007 (2018). https://doi.org/10.1088/0268-1242/33/2/025007
  15. J. Ji, C. M. Delehey, D. N. Houpt, M. K. Heighway, T. Lee, and J. H. Choi, "Selective Chemical Modulation of Interlayer Excitons in Atomically Thin Heterostructures", Nano Lett., 20(4), 2500 (2020). https://doi.org/10.1021/acs.nanolett.9b05254
  16. G. H. Shin, C. Park, K. J. Lee, H. J. Jin, and S. Y. Choi, "Ultrasensitive Phototransistor Based on WSe2-MoS2 van der Waals Heterojunction", Nano Lett., 20(8), 5741 (2020). https://doi.org/10.1021/acs.nanolett.0c01460
  17. J. G. Wang, F. C. Ma, W. J. Liang, and M. T. Sun, "Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures", Materials Today Physics, 2, 6 (2017). https://doi.org/10.1016/j.mtphys.2017.07.001
  18. X. R. Zong, H. M. Hu, G. Ouyang, J. W. Wang, R. Shi, L. Zhang, Q. S. Zeng, C. Zhu, S. H. Chen, C. Cheng, B. Wang, H. Zhang, Z. Liu, W. Huang, T. H. Wang, L. Wang, and X. L. Chen, "Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications", Light: Science & Applications, 9(1), 1 (2020). https://doi.org/10.1038/s41377-019-0231-1
  19. S. Bertolazzi, J. Brivio, and A. Kis, "Stretching and Breaking of Ultrathin MoS2", ACS Nano, 5(12), 9703 (2011). https://doi.org/10.1021/nn203879f
  20. C. X. Huo, Z. Yan, X. F. Song, and H. B. Zeng, "2D materials via liquid exfoliation: a review on fabrication and applications", Science bulletin, 60(23), 1994 (2015). https://doi.org/10.1007/s11434-015-0936-3
  21. N. D. Mansukhani, L. M. Guiney, P. J. Kim, Y. C. Zhao, D. Alducin, A. Ponce, E. Larios, M. J. Yacaman, and M. C. Hersam, "High-Concentration Aqueous Dispersions of Nanoscale 2D Materials Using Nonionic, Biocompatible Block Copolymers", Small, 12(3), 294 (2016). https://doi.org/10.1002/smll.201503082
  22. S. W. Jung, S. Pak, S. Lee, S. Reimers, S. Mukherjee, P. Dudin, T. K. Kim, M. Cattelan, N. Fox, S. S. Dhesi, C. Cacho, and S. Cha, "Spectral functions of CVD grown MoS2 monolayers after chemical transfer onto Au surface", Appl. Surf. Sci., 532, 147390 (2020). https://doi.org/10.1016/j.apsusc.2020.147390
  23. T. Y. Kim, Y. Song, K. Cho, M. Amani, G. H. Ahn, J. K. Kim, J. Pak, S. Chung, A. Javey, and T. Lee, "Analysis of the interface characteristics of CVD-grown monolayer MoS2 by noise measurements", Nanotechnology, 28(14), 145702 (2017). https://doi.org/10.1088/0957-4484/28/14/145702
  24. A. A. Koos, P. Vancso, M. Szendro, G. Dobrik, D. A. Silva, Z. I. Popov, P. B. Sorokin, L. Henrard, C. Y. Hwang, L. P. Biro, and L. Tapaszto, "Influence of Native Defects on the Electronic and Magnetic Properties of CVD Grown MoSe2 Single Layers", The Journal of Physical Chemistry C, 123(40), 24855 (2019). https://doi.org/10.1021/acs.jpcc.9b05921
  25. G. U. Ozkucuk, C. Odaci, E. Sahin, F. Ay, and N. K. Perkgoz, "Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate", Materials Science in Semiconductor Processing, 105, 104679 (2020). https://doi.org/10.1016/j.mssp.2019.104679
  26. M. K. S. Bin Rafiq, N. Amin, H. F. Alharbi, M. Luqman, A. Ayob, Y. S. Alharthi, N. H. Alharthi, B. Bais, and M. Akhtaruzzaman, "WS2: A New Window Layer Material for Solar Cell Application", Scientific Reports (Nature Publisher Group), 10(1), 1 (2020). https://doi.org/10.1038/s41598-019-56847-4
  27. A. Karatas and M. Yilmaz, "Molybdenum disulfide thin films fabrication from multi-phase molybdenum oxide using magnetron sputtering and CVD systems together", Superlattices and Microstructures, 143, 106555 (2020). https://doi.org/10.1016/j.spmi.2020.106555
  28. Y. X. Zhang, Y. H. Wang, Z. Z. Xiong, H. J. Zhang, and F. Liang, "Preparation and characterization of WSe2 nano-films by magnetron sputtering and vacuum selenization", Nanotechnology, 29(27), 275201 (2018). https://doi.org/10.1088/0957-4484/29/27/275201
  29. H. C. Diaz, Y. J. Ma, R. Chaghi, and M. Batzill, "High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe2/MoS2", Applied Physics Letters, 108(19), 191606 (2016). https://doi.org/10.1063/1.4949559
  30. Y. Y. Yu, G. Wang, S. Q. Qin, N. N. Wu, Z. Y. Wang, K. He, and X. A. Zhang, "Molecular beam epitaxy growth of atomically ultrathin MoTe2 lateral heterophase homojunctions on graphene substrates", Carbon, 115, 526 (2017). https://doi.org/10.1016/j.carbon.2017.01.026
  31. Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. K. Liu, F. Schmitt, J. Lee, R. Moore, Y. L. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, "Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2", Nature Nanotechnology, 9(2), 111 (2014). https://doi.org/10.1038/nnano.2013.277
  32. D. Andrzejewski, H. Myja, M. Heuken, A. Grundmann, H. Kalisch, A. Vescan, T. Kummell, and G. Bacher, 'Scalable Large-Area p-i-n Light-Emitting Diodes Based on WS2 Monolayers Grown via MOCVD", Acs Photonics, 6(8), 1832 (2019). https://doi.org/10.1021/acsphotonics.9b00311
  33. S. M. Eichfeld, L. Hossain, Y. C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, "Highly Scalable, Atomically Thin WSe2 Grown via Metal-Organic Chemical Vapor Deposition", Acs Nano, 9(2), 2080 (2015). https://doi.org/10.1021/nn5073286
  34. K. Kang, S. E. Xie, L. J. Huang, Y. M. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, "High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity", Nature, 520(7549), 656 (2015). https://doi.org/10.1038/nature14417
  35. Y. C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M. Y. Li, X. Peng, M. J. Kim, L. J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, "Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures", Nat. Commun., 6(1), 1 (2015).
  36. M. Marx, A. Grundmann, Y. R. Lin, D. Andrzejewski, T. Kummell, G. Bacher, M. Heuken, H. Kalisch, and A. Vescan, "Metalorganic Vapor-Phase Epitaxy Growth Parameters for Two-Dimensional MoS2", J. Electron. Mater., 47(2), 910 (2018). https://doi.org/10.1007/s11664-017-5937-3
  37. J. J. Pyeon, S. H. Kim, D. S. Jeong, S. H. Baek, C. Y. Kang, J. S. Kim, and S. K. Kim, "Wafer-scale growth of MoS2 thin films by atomic layer deposition", Nanoscale, 8(20), 10792 (2016). https://doi.org/10.1039/C6NR01346E
  38. L. K. Tan, B. Liu, J. H. Teng, S. F. Guo, H. Y. Low, H. R. Tan, C. Y. T. Chong, R. B. Yang, and K. P. Loh, "Atomic layer deposition of a MoS2 film", Nanoscale, 6(18), 10584 (2014). https://doi.org/10.1039/C4NR02451F
  39. S. Yeo, D. K. Nandi, R. Rahul, T. H. Kim, B. Shong, Y. Jang, J. S. Bae, J. W. Han, S. H. Kim, and H. Kim, "Low-temperature direct synthesis of high quality WS2 thin films by plasma-enhanced atomic layer deposition for energy related applications", Appl. Surf. Sci., 459, 596 (2018). https://doi.org/10.1016/j.apsusc.2018.07.210
  40. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, "From Bulk to Monolayer MoS2: Evolution of Raman Scattering", Adv. Funct. Mater., 22(7), 1385 (2012). https://doi.org/10.1002/adfm.201102111
  41. A. G. Bagnall, W. Y. Liang, E. A. Marseglia, and B. Welber, "Raman Studies of Mos2 at High-Pressure", Physica B+C, 99, 343 (1980). https://doi.org/10.1016/0378-4363(80)90257-0
  42. A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, "Identification of individual and few layers of WS2 using Raman Spectroscopy", Scientific reports, 3(1), 8 (2013).