References
- Abdelmohsen, K., Gerber, P.A., von Montfort, C., Sies, H., and Klotz, L.O. (2003). Epidermal growth factor receptor is a common mediator of quinone-induced signaling leading to phosphorylation of connexin-43: role of glutathione and tyrosine phosphatases. J. Biol. Chem. 278, 38360-38367. https://doi.org/10.1074/jbc.M306785200
- Back, S.H., Scheuner, D., Han, J., Song, B., Ribick, M., Wang, J., Gildersleeve, R.D., Pennathur, S., and Kaufman, R.J. (2009). Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells. Cell Metab. 10, 13-26. https://doi.org/10.1016/j.cmet.2009.06.002
- Berasain, C. and Avila, M.A. (2014). The EGFR signalling system in the liver: from hepatoprotection to hepatocarcinogenesis. J. Gastroenterol. 49, 9-23. https://doi.org/10.1007/s00535-013-0907-x
- Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., Blenis, J., and Greenberg, M.E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857-868. https://doi.org/10.1016/S0092-8674(00)80595-4
- Carballo, M., Conde, M., El Bekay, R., Martin-Nieto, J., Camacho, M.J., Monteseirin, J., Conde, J., Bedoya, F.J., and Sobrino, F. (1999). Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. J. Biol. Chem. 274, 17580-17586. https://doi.org/10.1074/jbc.274.25.17580
- Carpenter, G. and Cohen, S. (1990). Epidermal growth factor. J. Biol. Chem. 265, 7709-7712. https://doi.org/10.1016/S0021-9258(19)38983-5
- Chiarugi, P. and Buricchi, F. (2007). Protein tyrosine phosphorylation and reversible oxidation: two cross-talking posttranslation modifications. Antioxid. Redox Signal. 9, 1-24. https://doi.org/10.1089/ars.2007.9.1
- Choi, W.G., Han, J., Kim, J.H., Kim, M.J., Park, J.W., Song, B., Cha, H.J., Choi, H.S., Chung, H.T., Lee, I.K., et al. (2017). eIF2alpha phosphorylation is required to prevent hepatocyte death and liver fibrosis in mice challenged with a high fructose diet. Nutr. Metab. (Lond.) 14, 48. https://doi.org/10.1186/s12986-017-0202-6
- Chowdhry, S., Zhang, Y., McMahon, M., Sutherland, C., Cuadrado, A., and Hayes, J.D. (2013). Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 32, 3765-3781. https://doi.org/10.1038/onc.2012.388
- Citri, A. and Yarden, Y. (2006). EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell Biol. 7, 505-516. https://doi.org/10.1038/nrm1962
- Fan, Q.W., Cheng, C.K., Gustafson, W.C., Charron, E., Zipper, P., Wong, R.A., Chen, J., Lau, J., Knobbe-Thomsen, C., Weller, M., et al. (2013). EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell 24, 438-449. https://doi.org/10.1016/j.ccr.2013.09.004
- Filosto, S., Khan, E.M., Tognon, E., Becker, C., Ashfaq, M., Ravid, T., and Goldkorn, T. (2011). EGF receptor exposed to oxidative stress acquires abnormal phosphorylation and aberrant activated conformation that impairs canonical dimerization. PLoS One 6, e23240. https://doi.org/10.1371/journal.pone.0023240
- Gamou, S. and Shimizu, N. (1995). Hydrogen peroxide preferentially enhances the tyrosine phosphorylation of epidermal growth factor receptor. FEBS Lett. 357, 161-164. https://doi.org/10.1016/0014-5793(94)01335-X
- Goldkorn, T., Balaban, N., Matsukuma, K., Chea, V., Gould, R., Last, J., Chan, C., and Chavez, C. (1998). EGF-Receptor phosphorylation and signaling are targeted by H2O2 redox stress. Am. J. Respir. Cell Mol. Biol. 19, 786-798. https://doi.org/10.1165/ajrcmb.19.5.3249
- Guren, T.K., Odegard, J., Abrahamsen, H., Thoresen, G.H., Susa, M., Andersson, Y., Ostby, E., and Christoffersen, T. (2003). EGF receptor-mediated, c-Src-dependent, activation of Stat5b is downregulated in mitogenically responsive hepatocytes. J. Cell. Physiol. 196, 113-123. https://doi.org/10.1002/jcp.10282
- Hagenbuchner, J., Kuznetsov, A., Hermann, M., Hausott, B., Obexer, P., and Ausserlechner, M.J. (2012). FOXO3-induced reactive oxygen species are regulated by BCL2L11 (Bim) and SESN3. J. Cell Sci. 125, 1191-1203. https://doi.org/10.1242/jcs.092098
- Han, J., Back, S.H., Hur, J., Lin, Y.H., Gildersleeve, R., Shan, J., Yuan, C.L., Krokowski, D., Wang, S., Hatzoglou, M., et al. (2013). ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481-490. https://doi.org/10.1038/ncb2738
- Haouzi, D., Lekehal, M., Moreau, A., Moulis, C., Feldmann, G., Robin, M.A., Letteron, P., Fau, D., and Pessayre, D. (2000). Cytochrome P450-generated reactive metabolites cause mitochondrial permeability transition, caspase activation, and apoptosis in rat hepatocytes. Hepatology 32, 303-311. https://doi.org/10.1053/jhep.2000.9034
- Heppner, D.E. and van der Vliet, A. (2016). Redox-dependent regulation of epidermal growth factor receptor signaling. Redox Biol. 8, 24-27. https://doi.org/10.1016/j.redox.2015.12.002
- Jorissen, R.N., Walker, F., Pouliot, N., Garrett, T.P., Ward, C.W., and Burgess, A.W. (2003). Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell Res. 284, 31-53. https://doi.org/10.1016/S0014-4827(02)00098-8
- Kim, D., Dai, J., Fai, L.Y., Yao, H., Son, Y.O., Wang, L., Pratheeshkumar, P., Kondo, K., Shi, X., and Zhang, Z. (2015). Constitutive activation of epidermal growth factor receptor promotes tumorigenesis of Cr(VI)-transformed cells through decreased reactive oxygen species and apoptosis resistance development. J. Biol. Chem. 290, 2213-2224. https://doi.org/10.1074/jbc.M114.619783
- Kim, M.K., Yee, J., Cho, Y.S., Jang, H.W., Han, J.M., and Gwak, H.S. (2018). Risk factors for erlotinib-induced hepatotoxicity: a retrospective follow-up study. BMC Cancer 18, 988. https://doi.org/10.1186/s12885-018-4891-7
- Kitade, M., Factor, V.M., Andersen, J.B., Tomokuni, A., Kaji, K., Akita, H., Holczbauer, A., Seo, D., Marquardt, J.U., Conner, E.A., et al. (2013). Specific fate decisions in adult hepatic progenitor cells driven by MET and EGFR signaling. Genes Dev. 27, 1706-1717. https://doi.org/10.1101/gad.214601.113
- Lee, S.R., Kwon, K.S., Kim, S.R., and Rhee, S.G. (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15366-15372. https://doi.org/10.1074/jbc.273.25.15366
- Lewerenz, J. and Maher, P. (2009). Basal levels of eIF2alpha phosphorylation determine cellular antioxidant status by regulating ATF4 and xCT expression. J. Biol. Chem. 284, 1106-1115. https://doi.org/10.1074/jbc.M807325200
- Li, J., Zhao, M., He, P., Hidalgo, M., and Baker, S.D. (2007). Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin. Cancer Res. 13, 3731-3737. https://doi.org/10.1158/1078-0432.CCR-07-0088
- Liebmann, C. (2011). EGF receptor activation by GPCRs: an universal pathway reveals different versions. Mol. Cell. Endocrinol. 331, 222-231. https://doi.org/10.1016/j.mce.2010.04.008
- Liu, L., Wise, D.R., Diehl, J.A., and Simon, M.C. (2008). Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. J. Biol. Chem. 283, 31153-31162. https://doi.org/10.1074/jbc.M805056200
- Ma, Q. (2013). Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 53, 401-426. https://doi.org/10.1146/annurev-pharmtox-011112-140320
- Miklossy, G., Hilliard, T.S., and Turkson, J. (2013). Therapeutic modulators of STAT signalling for human diseases. Nat. Rev. Drug Discov. 12, 611-629. https://doi.org/10.1038/nrd4088
- Morita, M., Matsuzaki, H., Yamamoto, T., Fukami, Y., and Kikkawa, U. (2008). Epidermal growth factor receptor phosphorylates protein kinase C {delta} at Tyr332 to form a trimeric complex with p66Shc in the H2O2-stimulated cells. J. Biochem. 143, 31-38.
- Musallam, L., Ethier, C., Haddad, P.S., and Bilodeau, M. (2001). Role of EGF receptor tyrosine kinase activity in antiapoptotic effect of EGF on mouse hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G1360-G1369. https://doi.org/10.1152/ajpgi.2001.280.6.G1360
- Oh, H.Y., Namkoong, S., Lee, S.J., Por, E., Kim, C.K., Billiar, T.R., Han, J.A., Ha, K.S., Chung, H.T., Kwon, Y.G., et al. (2006). Dexamethasone protects primary cultured hepatocytes from death receptor-mediated apoptosis by upregulation of cFLIP. Cell Death Differ. 13, 512-523. https://doi.org/10.1038/sj.cdd.4401771
- Orcutt, K.P., Parsons, A.D., Sibenaller, Z.A., Scarbrough, P.M., Zhu, Y., Sobhakumari, A., Wilke, W.W., Kalen, A.L., Goswami, P., Miller, F.J., Jr., et al. (2011). Erlotinib-mediated inhibition of EGFR signaling induces metabolic oxidative stress through NOX4. Cancer Res. 71, 3932-3940. https://doi.org/10.1158/0008-5472.CAN-10-3425
- Ostrowski, J., Woszczynski, M., Kowalczyk, P., Trzeciak, L., Hennig, E., and Bomsztyk, K. (2000). Treatment of mice with EGF and orthovanadate activates cytoplasmic and nuclear MAPK, p70S6k, and p90rsk in the liver. J. Hepatol. 32, 965-974. https://doi.org/10.1016/S0168-8278(00)80101-4
- Paech, F., Bouitbir, J., and Krahenbuhl, S. (2017). Hepatocellular toxicity associated with tyrosine kinase inhibitors: mitochondrial damage and inhibition of glycolysis. Front. Pharmacol. 8, 367. https://doi.org/10.3389/fphar.2017.00367
- Paulsen, C.E., Truong, T.H., Garcia, F.J., Homann, A., Gupta, V., Leonard, S.E., and Carroll, K.S. (2011). Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat. Chem. Biol. 8, 57-64. https://doi.org/10.1038/nchembio.736
- Proud, C.G. (2005). eIF2 and the control of cell physiology. Semin. Cell Dev. Biol. 16, 3-12. https://doi.org/10.1016/j.semcdb.2004.11.004
- Quesnelle, K.M., Boehm, A.L., and Grandis, J.R. (2007). STAT-mediated EGFR signaling in cancer. J. Cell. Biochem. 102, 311-319. https://doi.org/10.1002/jcb.21475
- Rajesh, K., Krishnamoorthy, J., Kazimierczak, U., Tenkerian, C., Papadakis, A.I., Wang, S., Huang, S., and Koromilas, A.E. (2015). Phosphorylation of the translation initiation factor eIF2alpha at serine 51 determines the cell fate decisions of Akt in response to oxidative stress. Cell Death Dis. 6, e1591. https://doi.org/10.1038/cddis.2014.554
- Rakhit, A., Pantze, M.P., Fettner, S., Jones, H.M., Charoin, J.E., Riek, M., Lum, B.L., and Hamilton, M. (2008). The effects of CYP3A4 inhibition on erlotinib pharmacokinetics: computer-based simulation (SimCYP) predicts in vivo metabolic inhibition. Eur. J. Clin. Pharmacol. 64, 31-41. https://doi.org/10.1007/s00228-007-0396-z
- Rodriguez-Fragoso, L., Melendez, K., Hudson, L.G., Lauer, F.T., and Burchiel, S.W. (2009). EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells. Toxicol. Appl. Pharmacol. 235, 321-328. https://doi.org/10.1016/j.taap.2008.12.022
- Sadidi, M., Lentz, S.I., and Feldman, E.L. (2009). Hydrogen peroxide-induced Akt phosphorylation regulates Bax activation. Biochimie 91, 577-585. https://doi.org/10.1016/j.biochi.2009.01.010
- Sato, K. (2013). Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int. J. Mol. Sci. 14, 10761-10790. https://doi.org/10.3390/ijms140610761
- Schneider, M.R. and Wolf, E. (2009). The epidermal growth factor receptor ligands at a glance. J. Cell. Physiol. 218, 460-466. https://doi.org/10.1002/jcp.21635
- Schreier, B., Rabe, S., Schneider, B., Bretschneider, M., Rupp, S., Ruhs, S., Neumann, J., Rueckschloss, U., Sibilia, M., Gotthardt, M., et al. (2013). Loss of epidermal growth factor receptor in vascular smooth muscle cells and cardiomyocytes causes arterial hypotension and cardiac hypertrophy. Hypertension 61, 333-340. https://doi.org/10.1161/HYPERTENSIONAHA.112.196543
- Sham, D., Wesley, U.V., Hristova, M., and van der Vliet, A. (2013). ATP-mediated transactivation of the epidermal growth factor receptor in airway epithelial cells involves DUOX1-dependent oxidation of Src and ADAM17. PLoS One 8, e54391. https://doi.org/10.1371/journal.pone.0054391
- Sonenberg, N. and Hinnebusch, A.G. (2009). Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731-745. https://doi.org/10.1016/j.cell.2009.01.042
- Wang, X., McCullough, K.D., Franke, T.F., and Holbrook, N.J. (2000). Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J. Biol. Chem. 275, 14624-14631. https://doi.org/10.1074/jbc.275.19.14624
- Wang, X.T., McCullough, K.D., Wang, X.J., Carpenter, G., and Holbrook, N.J. (2001). Oxidative stress-induced phospholipase C-gamma 1 activation enhances cell survival. J. Biol. Chem. 276, 28364-28371. https://doi.org/10.1074/jbc.M102693200
- Wek, R.C., Jiang, H.Y., and Anthony, T.G. (2006). Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 7-11. https://doi.org/10.1042/BST0340007
- Weng, M.S., Chang, J.H., Hung, W.Y., Yang, Y.C., and Chien, M.H. (2018). The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J. Exp. Clin. Cancer Res. 37, 61. https://doi.org/10.1186/s13046-018-0728-0
Cited by
- Therapeutic mechanism of Toujie Quwen granules in COVID-19 based on network pharmacology vol.13, pp.1, 2020, https://doi.org/10.1186/s13040-020-00225-8
- Potential therapeutic targets and molecular details of anthocyan-treated inflammatory bowel disease: a systematic bioinformatics analysis of network pharmacology vol.11, pp.14, 2020, https://doi.org/10.1039/d0ra09117k
- Increased Hepatic Lipogenesis Elevates Liver Cholesterol Content vol.44, pp.2, 2021, https://doi.org/10.14348/molcells.2021.2147