DOI QR코드

DOI QR Code

Reduced EGFR Level in eIF2α Phosphorylation-Deficient Hepatocytes Is Responsible for Susceptibility to Oxidative Stress

  • Kim, Mi-Jeong (School of Biological Sciences, University of Ulsan) ;
  • Choi, Woo-Gyun (School of Biological Sciences, University of Ulsan) ;
  • Ahn, Kyung-Ju (School of Biological Sciences, University of Ulsan) ;
  • Chae, In Gyeong (School of Biological Sciences, University of Ulsan) ;
  • Yu, Rina (Department of Food Science and Nutrition, University of Ulsan) ;
  • Back, Sung Hoon (School of Biological Sciences, University of Ulsan)
  • Received : 2019.08.28
  • Accepted : 2020.01.10
  • Published : 2020.03.31

Abstract

Reactive oxygen species (ROS) play a significant role in intracellular signaling and regulation, particularly when they are maintained at physiologic levels. However, excess ROS can cause cell damage and induce cell death. We recently reported that eIF2α phosphorylation protects hepatocytes from oxidative stress and liver fibrosis induced by fructose metabolism. Here, we found that hepatocyte-specific eIF2α phosphorylation-deficient mice have significantly reduced expression of the epidermal growth factor receptor (EGFR) and altered EGFR-mediated signaling pathways. EGFR-mediated signaling pathways are important for cell proliferation, differentiation, and survival in many tissues and cell types. Therefore, we studied whether the reduced amount of EGFR is responsible for the eIF2α phosphorylation-deficient hepatocytes' vulnerability to oxidative stress. ROS such as hydrogen peroxide and superoxides induce both EGFR tyrosine phosphorylation and eIF2α phosphorylation. eIF2α phosphorylation-deficient primary hepatocytes, or EGFR knockdown cells, have decreased ROS scavenging ability compared to normal cells. Therefore, these cells are particularly susceptible to oxidative stress. However, overexpression of EGFR in these eIF2α phosphorylation-deficient primary hepatocytes increased ROS scavenging ability and alleviated ROS-mediated cell death. Therefore, we hypothesize that the reduced EGFR level in eIF2α phosphorylation-deficient hepatocytes is one of critical factors responsible for their susceptibility to oxidative stress.

Keywords

References

  1. Abdelmohsen, K., Gerber, P.A., von Montfort, C., Sies, H., and Klotz, L.O. (2003). Epidermal growth factor receptor is a common mediator of quinone-induced signaling leading to phosphorylation of connexin-43: role of glutathione and tyrosine phosphatases. J. Biol. Chem. 278, 38360-38367. https://doi.org/10.1074/jbc.M306785200
  2. Back, S.H., Scheuner, D., Han, J., Song, B., Ribick, M., Wang, J., Gildersleeve, R.D., Pennathur, S., and Kaufman, R.J. (2009). Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells. Cell Metab. 10, 13-26. https://doi.org/10.1016/j.cmet.2009.06.002
  3. Berasain, C. and Avila, M.A. (2014). The EGFR signalling system in the liver: from hepatoprotection to hepatocarcinogenesis. J. Gastroenterol. 49, 9-23. https://doi.org/10.1007/s00535-013-0907-x
  4. Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., Blenis, J., and Greenberg, M.E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857-868. https://doi.org/10.1016/S0092-8674(00)80595-4
  5. Carballo, M., Conde, M., El Bekay, R., Martin-Nieto, J., Camacho, M.J., Monteseirin, J., Conde, J., Bedoya, F.J., and Sobrino, F. (1999). Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. J. Biol. Chem. 274, 17580-17586. https://doi.org/10.1074/jbc.274.25.17580
  6. Carpenter, G. and Cohen, S. (1990). Epidermal growth factor. J. Biol. Chem. 265, 7709-7712. https://doi.org/10.1016/S0021-9258(19)38983-5
  7. Chiarugi, P. and Buricchi, F. (2007). Protein tyrosine phosphorylation and reversible oxidation: two cross-talking posttranslation modifications. Antioxid. Redox Signal. 9, 1-24. https://doi.org/10.1089/ars.2007.9.1
  8. Choi, W.G., Han, J., Kim, J.H., Kim, M.J., Park, J.W., Song, B., Cha, H.J., Choi, H.S., Chung, H.T., Lee, I.K., et al. (2017). eIF2alpha phosphorylation is required to prevent hepatocyte death and liver fibrosis in mice challenged with a high fructose diet. Nutr. Metab. (Lond.) 14, 48. https://doi.org/10.1186/s12986-017-0202-6
  9. Chowdhry, S., Zhang, Y., McMahon, M., Sutherland, C., Cuadrado, A., and Hayes, J.D. (2013). Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 32, 3765-3781. https://doi.org/10.1038/onc.2012.388
  10. Citri, A. and Yarden, Y. (2006). EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell Biol. 7, 505-516. https://doi.org/10.1038/nrm1962
  11. Fan, Q.W., Cheng, C.K., Gustafson, W.C., Charron, E., Zipper, P., Wong, R.A., Chen, J., Lau, J., Knobbe-Thomsen, C., Weller, M., et al. (2013). EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell 24, 438-449. https://doi.org/10.1016/j.ccr.2013.09.004
  12. Filosto, S., Khan, E.M., Tognon, E., Becker, C., Ashfaq, M., Ravid, T., and Goldkorn, T. (2011). EGF receptor exposed to oxidative stress acquires abnormal phosphorylation and aberrant activated conformation that impairs canonical dimerization. PLoS One 6, e23240. https://doi.org/10.1371/journal.pone.0023240
  13. Gamou, S. and Shimizu, N. (1995). Hydrogen peroxide preferentially enhances the tyrosine phosphorylation of epidermal growth factor receptor. FEBS Lett. 357, 161-164. https://doi.org/10.1016/0014-5793(94)01335-X
  14. Goldkorn, T., Balaban, N., Matsukuma, K., Chea, V., Gould, R., Last, J., Chan, C., and Chavez, C. (1998). EGF-Receptor phosphorylation and signaling are targeted by H2O2 redox stress. Am. J. Respir. Cell Mol. Biol. 19, 786-798. https://doi.org/10.1165/ajrcmb.19.5.3249
  15. Guren, T.K., Odegard, J., Abrahamsen, H., Thoresen, G.H., Susa, M., Andersson, Y., Ostby, E., and Christoffersen, T. (2003). EGF receptor-mediated, c-Src-dependent, activation of Stat5b is downregulated in mitogenically responsive hepatocytes. J. Cell. Physiol. 196, 113-123. https://doi.org/10.1002/jcp.10282
  16. Hagenbuchner, J., Kuznetsov, A., Hermann, M., Hausott, B., Obexer, P., and Ausserlechner, M.J. (2012). FOXO3-induced reactive oxygen species are regulated by BCL2L11 (Bim) and SESN3. J. Cell Sci. 125, 1191-1203. https://doi.org/10.1242/jcs.092098
  17. Han, J., Back, S.H., Hur, J., Lin, Y.H., Gildersleeve, R., Shan, J., Yuan, C.L., Krokowski, D., Wang, S., Hatzoglou, M., et al. (2013). ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481-490. https://doi.org/10.1038/ncb2738
  18. Haouzi, D., Lekehal, M., Moreau, A., Moulis, C., Feldmann, G., Robin, M.A., Letteron, P., Fau, D., and Pessayre, D. (2000). Cytochrome P450-generated reactive metabolites cause mitochondrial permeability transition, caspase activation, and apoptosis in rat hepatocytes. Hepatology 32, 303-311. https://doi.org/10.1053/jhep.2000.9034
  19. Heppner, D.E. and van der Vliet, A. (2016). Redox-dependent regulation of epidermal growth factor receptor signaling. Redox Biol. 8, 24-27. https://doi.org/10.1016/j.redox.2015.12.002
  20. Jorissen, R.N., Walker, F., Pouliot, N., Garrett, T.P., Ward, C.W., and Burgess, A.W. (2003). Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell Res. 284, 31-53. https://doi.org/10.1016/S0014-4827(02)00098-8
  21. Kim, D., Dai, J., Fai, L.Y., Yao, H., Son, Y.O., Wang, L., Pratheeshkumar, P., Kondo, K., Shi, X., and Zhang, Z. (2015). Constitutive activation of epidermal growth factor receptor promotes tumorigenesis of Cr(VI)-transformed cells through decreased reactive oxygen species and apoptosis resistance development. J. Biol. Chem. 290, 2213-2224. https://doi.org/10.1074/jbc.M114.619783
  22. Kim, M.K., Yee, J., Cho, Y.S., Jang, H.W., Han, J.M., and Gwak, H.S. (2018). Risk factors for erlotinib-induced hepatotoxicity: a retrospective follow-up study. BMC Cancer 18, 988. https://doi.org/10.1186/s12885-018-4891-7
  23. Kitade, M., Factor, V.M., Andersen, J.B., Tomokuni, A., Kaji, K., Akita, H., Holczbauer, A., Seo, D., Marquardt, J.U., Conner, E.A., et al. (2013). Specific fate decisions in adult hepatic progenitor cells driven by MET and EGFR signaling. Genes Dev. 27, 1706-1717. https://doi.org/10.1101/gad.214601.113
  24. Lee, S.R., Kwon, K.S., Kim, S.R., and Rhee, S.G. (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15366-15372. https://doi.org/10.1074/jbc.273.25.15366
  25. Lewerenz, J. and Maher, P. (2009). Basal levels of eIF2alpha phosphorylation determine cellular antioxidant status by regulating ATF4 and xCT expression. J. Biol. Chem. 284, 1106-1115. https://doi.org/10.1074/jbc.M807325200
  26. Li, J., Zhao, M., He, P., Hidalgo, M., and Baker, S.D. (2007). Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin. Cancer Res. 13, 3731-3737. https://doi.org/10.1158/1078-0432.CCR-07-0088
  27. Liebmann, C. (2011). EGF receptor activation by GPCRs: an universal pathway reveals different versions. Mol. Cell. Endocrinol. 331, 222-231. https://doi.org/10.1016/j.mce.2010.04.008
  28. Liu, L., Wise, D.R., Diehl, J.A., and Simon, M.C. (2008). Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. J. Biol. Chem. 283, 31153-31162. https://doi.org/10.1074/jbc.M805056200
  29. Ma, Q. (2013). Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 53, 401-426. https://doi.org/10.1146/annurev-pharmtox-011112-140320
  30. Miklossy, G., Hilliard, T.S., and Turkson, J. (2013). Therapeutic modulators of STAT signalling for human diseases. Nat. Rev. Drug Discov. 12, 611-629. https://doi.org/10.1038/nrd4088
  31. Morita, M., Matsuzaki, H., Yamamoto, T., Fukami, Y., and Kikkawa, U. (2008). Epidermal growth factor receptor phosphorylates protein kinase C {delta} at Tyr332 to form a trimeric complex with p66Shc in the H2O2-stimulated cells. J. Biochem. 143, 31-38.
  32. Musallam, L., Ethier, C., Haddad, P.S., and Bilodeau, M. (2001). Role of EGF receptor tyrosine kinase activity in antiapoptotic effect of EGF on mouse hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G1360-G1369. https://doi.org/10.1152/ajpgi.2001.280.6.G1360
  33. Oh, H.Y., Namkoong, S., Lee, S.J., Por, E., Kim, C.K., Billiar, T.R., Han, J.A., Ha, K.S., Chung, H.T., Kwon, Y.G., et al. (2006). Dexamethasone protects primary cultured hepatocytes from death receptor-mediated apoptosis by upregulation of cFLIP. Cell Death Differ. 13, 512-523. https://doi.org/10.1038/sj.cdd.4401771
  34. Orcutt, K.P., Parsons, A.D., Sibenaller, Z.A., Scarbrough, P.M., Zhu, Y., Sobhakumari, A., Wilke, W.W., Kalen, A.L., Goswami, P., Miller, F.J., Jr., et al. (2011). Erlotinib-mediated inhibition of EGFR signaling induces metabolic oxidative stress through NOX4. Cancer Res. 71, 3932-3940. https://doi.org/10.1158/0008-5472.CAN-10-3425
  35. Ostrowski, J., Woszczynski, M., Kowalczyk, P., Trzeciak, L., Hennig, E., and Bomsztyk, K. (2000). Treatment of mice with EGF and orthovanadate activates cytoplasmic and nuclear MAPK, p70S6k, and p90rsk in the liver. J. Hepatol. 32, 965-974. https://doi.org/10.1016/S0168-8278(00)80101-4
  36. Paech, F., Bouitbir, J., and Krahenbuhl, S. (2017). Hepatocellular toxicity associated with tyrosine kinase inhibitors: mitochondrial damage and inhibition of glycolysis. Front. Pharmacol. 8, 367. https://doi.org/10.3389/fphar.2017.00367
  37. Paulsen, C.E., Truong, T.H., Garcia, F.J., Homann, A., Gupta, V., Leonard, S.E., and Carroll, K.S. (2011). Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat. Chem. Biol. 8, 57-64. https://doi.org/10.1038/nchembio.736
  38. Proud, C.G. (2005). eIF2 and the control of cell physiology. Semin. Cell Dev. Biol. 16, 3-12. https://doi.org/10.1016/j.semcdb.2004.11.004
  39. Quesnelle, K.M., Boehm, A.L., and Grandis, J.R. (2007). STAT-mediated EGFR signaling in cancer. J. Cell. Biochem. 102, 311-319. https://doi.org/10.1002/jcb.21475
  40. Rajesh, K., Krishnamoorthy, J., Kazimierczak, U., Tenkerian, C., Papadakis, A.I., Wang, S., Huang, S., and Koromilas, A.E. (2015). Phosphorylation of the translation initiation factor eIF2alpha at serine 51 determines the cell fate decisions of Akt in response to oxidative stress. Cell Death Dis. 6, e1591. https://doi.org/10.1038/cddis.2014.554
  41. Rakhit, A., Pantze, M.P., Fettner, S., Jones, H.M., Charoin, J.E., Riek, M., Lum, B.L., and Hamilton, M. (2008). The effects of CYP3A4 inhibition on erlotinib pharmacokinetics: computer-based simulation (SimCYP) predicts in vivo metabolic inhibition. Eur. J. Clin. Pharmacol. 64, 31-41. https://doi.org/10.1007/s00228-007-0396-z
  42. Rodriguez-Fragoso, L., Melendez, K., Hudson, L.G., Lauer, F.T., and Burchiel, S.W. (2009). EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells. Toxicol. Appl. Pharmacol. 235, 321-328. https://doi.org/10.1016/j.taap.2008.12.022
  43. Sadidi, M., Lentz, S.I., and Feldman, E.L. (2009). Hydrogen peroxide-induced Akt phosphorylation regulates Bax activation. Biochimie 91, 577-585. https://doi.org/10.1016/j.biochi.2009.01.010
  44. Sato, K. (2013). Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int. J. Mol. Sci. 14, 10761-10790. https://doi.org/10.3390/ijms140610761
  45. Schneider, M.R. and Wolf, E. (2009). The epidermal growth factor receptor ligands at a glance. J. Cell. Physiol. 218, 460-466. https://doi.org/10.1002/jcp.21635
  46. Schreier, B., Rabe, S., Schneider, B., Bretschneider, M., Rupp, S., Ruhs, S., Neumann, J., Rueckschloss, U., Sibilia, M., Gotthardt, M., et al. (2013). Loss of epidermal growth factor receptor in vascular smooth muscle cells and cardiomyocytes causes arterial hypotension and cardiac hypertrophy. Hypertension 61, 333-340. https://doi.org/10.1161/HYPERTENSIONAHA.112.196543
  47. Sham, D., Wesley, U.V., Hristova, M., and van der Vliet, A. (2013). ATP-mediated transactivation of the epidermal growth factor receptor in airway epithelial cells involves DUOX1-dependent oxidation of Src and ADAM17. PLoS One 8, e54391. https://doi.org/10.1371/journal.pone.0054391
  48. Sonenberg, N. and Hinnebusch, A.G. (2009). Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731-745. https://doi.org/10.1016/j.cell.2009.01.042
  49. Wang, X., McCullough, K.D., Franke, T.F., and Holbrook, N.J. (2000). Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J. Biol. Chem. 275, 14624-14631. https://doi.org/10.1074/jbc.275.19.14624
  50. Wang, X.T., McCullough, K.D., Wang, X.J., Carpenter, G., and Holbrook, N.J. (2001). Oxidative stress-induced phospholipase C-gamma 1 activation enhances cell survival. J. Biol. Chem. 276, 28364-28371. https://doi.org/10.1074/jbc.M102693200
  51. Wek, R.C., Jiang, H.Y., and Anthony, T.G. (2006). Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 7-11. https://doi.org/10.1042/BST0340007
  52. Weng, M.S., Chang, J.H., Hung, W.Y., Yang, Y.C., and Chien, M.H. (2018). The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J. Exp. Clin. Cancer Res. 37, 61. https://doi.org/10.1186/s13046-018-0728-0

Cited by

  1. Therapeutic mechanism of Toujie Quwen granules in COVID-19 based on network pharmacology vol.13, pp.1, 2020, https://doi.org/10.1186/s13040-020-00225-8
  2. Potential therapeutic targets and molecular details of anthocyan-treated inflammatory bowel disease: a systematic bioinformatics analysis of network pharmacology vol.11, pp.14, 2020, https://doi.org/10.1039/d0ra09117k
  3. Increased Hepatic Lipogenesis Elevates Liver Cholesterol Content vol.44, pp.2, 2021, https://doi.org/10.14348/molcells.2021.2147