참고문헌
-
Aharoni-Simon, M., Shumiatcher, R., Yeung, A., Shih, A.Z.L., Dolinsky, V.W., Doucette, C.A., and Luciani, D.S. (2016). Bcl-2 regulates reactive oxygen species signaling and a redox-sensitive mitochondrial proton leak in mouse pancreatic
${\beta}$ -cells. Endocrinology 157, 2270-2281. https://doi.org/10.1210/en.2015-1964 - Belizario, J., Vieira-Cordeiro, L., and Enns, S. (2015). Necroptotic cell death signaling and execution pathway: lessons from knockout mice. Mediators Inflamm. 2015, 128076. https://doi.org/10.1155/2015/128076
- Berezovskaya, O., Schimmer, A.D., Glinskii, A.B., Pinilla, C., Hoffman, R.M., Reed, J.C., and Glinsky, G.V. (2005). Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate cancer metastasis precursor cells increased expression of apoptosis inhibitor protein XIAPcontributes to anoikis resistance of circul. Cancer Res. 65, 2378-2386. https://doi.org/10.1158/0008-5472.CAN-04-2649
- Berghe, T., Vanden, Linkermann, A., Jouan-Lanhouet, S., Walczak, H., and Vandenabeele, P. (2014). Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135-147. https://doi.org/10.1038/nrm3737
- Bernardi, P., Krauskopf, A., Basso, E., Petronilli, V., Blalchy-Dyson, E., Di Lisa, F., and Forte, M.A. (2006). The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 273, 2077-2099. https://doi.org/10.1111/j.1742-4658.2006.05213.x
- Cai, Z., Jitkaew, S., Zhao, J., Chiang, H.C., Choksi, S., Liu, J., Ward, Y., Wu, L.G., and Liu, Z.G. (2014). Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 16, 55-65. https://doi.org/10.1038/ncb2883
- Chai, J., Shiozaki, E., Srinivasula, S.M., Wu, Q., Datta, P., Alnemri, E.S., and Shi, Y. (2001). Structural basis of caspase-7 inhibition by XIAP. Cell 104, 769-780. https://doi.org/10.1016/S0092-8674(01)00272-0
- Chan, F.K.-M., Luz, N.F., and Moriwaki, K. (2015). Programmed necrosis in the cross talk of cell death and inflammation. Annu. Rev. Immunol. 33, 79-106. https://doi.org/10.1146/annurev-immunol-032414-112248
- Christofferson, D.E. and Yuan, J. (2010). Cyclophilin a release as a biomarker of necrotic cell death. Cell Death Differ. 17, 1942-1943. https://doi.org/10.1038/cdd.2010.123
- Dan, H.C., Sun, M., Kaneko, S., Feldman, R.I., Nicosia, S.V., Wang, H.G., Tsang, B.K., and Cheng, J.Q. (2004). Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J. Biol. Chem. 279, 5405-5412. https://doi.org/10.1074/jbc.M312044200
- Dasgupta, A., Nomura, M., Shuck, R., and Yustein, J. (2017). Cancer's Achilles' heel: apoptosis and necroptosis to the rescue. Int. J. Mol. Sci. 18, 1-20. https://doi.org/10.3390/ijms18010001
- Dashzeveg, N. and Yoshida, K. (2015). Cell death decision by p53 via control of the mitochondrial membrane. Cancer Lett. 367, 108-112. https://doi.org/10.1016/j.canlet.2015.07.019
- De Almagro, M.C. and Vucic, D. (2015). Necroptosis: pathway diversity and characteristics. Semin. Cell Dev. Biol. 39, 56-62. https://doi.org/10.1016/j.semcdb.2015.02.002
- Deveraux, Q.L., Leo, E., Stennicke, H.R., Welsh, K., Salvesen, G.S., Reed, J.C., Boldin, M., Goncharov, T., Goltsev, Y., Wallach, D., et al. (1999). Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18, 5242-5251. https://doi.org/10.1093/emboj/18.19.5242
- Dondelinger, Y., Hulpiau, P., Saeys, Y., Bertrand, M.J.M., and Vandenabeele, P. (2016). An evolutionary perspective on the necroptotic pathway. Trends Cell Biol. 26, 721-732. https://doi.org/10.1016/j.tcb.2016.06.004
- Duckett, C.S., Li, F., Wang, Y., Tomaselli, K.J., Thompson, C.B., and Armstrong, R.C. (1998). Human Iap-like protein regulates programmed cell death downstream of Bcl-X(L) and cytochrome C. Mol. Cell. Biol. 18, 608-615. https://doi.org/10.1128/MCB.18.1.608
- Eigenbrod, T., Park, J.H., Harder, J., Iwakura, Y., and Nunez, G. (2008). Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. J. Immunol. 181, 8194-8198. https://doi.org/10.4049/jimmunol.181.12.8194
- Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., and Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359-E386. https://doi.org/10.1002/ijc.29210
- Fulda, S. (2013). The mechanism of necroptosis in normal and cancer cells. Cancer Biol. Ther. 14, 999-1004. https://doi.org/10.4161/cbt.26428
- Geou-Yarh Liou, P.S. (2010). Reactive oxygen species in cancer. Free Radic. Res. 44, 47-49. https://doi.org/10.3109/10715760903321804
- Gonzalez-Juarbe, N., Gilley, R.P., Hinojosa, C.A., Bradley, K.M., Kamei, A., Gao, G., Dube, P.H., Bergman, M.A., and Orihuela, C.J. (2015). Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia. PLoS Pathog. 11, 1-23.
- Halestrap, A.P. (2009). Mitochondria and reperfusion injury of the heart-A holey death but not beyond salvation. J. Bioenerg. Biomembr. 41, 113-121. https://doi.org/10.1007/s10863-009-9206-x
- Han, W., Li, L., Qiu, S., Lu, Q., Pan, Q., Gu, Y., Luo, J., and Hu, X. (2007). Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol. Cancer Ther. 6, 1641-1649. https://doi.org/10.1158/1535-7163.MCT-06-0511
- Hanahan, D. and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
-
He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., and Wang, X. (2009). Receptor interacting protein Kinase-3 determines cellular necrotic response to TNF-
${\alpha}$ . Cell 137, 1100-1111. https://doi.org/10.1016/j.cell.2009.05.021 - Hong, S.W., Kim, C.J., Park, W.S., Shin, J.S., Lee, S.D., Ko, S.G., Jung, S.I., Park, I.C., An, S.K., Lee, W.K., et al. (2009). p34SEI-1 inhibits apoptosis through the stabilization of the X-linked inhibitor of apoptosis protein: p34SEI-1 as a novel target for anti-breast cancer strategies. Cancer Res. 69, 741-746. https://doi.org/10.1158/0008-5472.CAN-08-1189
- Hong, S.W., Shin, J.S., Lee, Y.M., Kim, D.G., Lee, S.Y., Yoon, D.H., Jung, S.Y., Hwang, J.J., Lee, S.J., Cho, D.H., et al. (2011). p34SEI-1 inhibits ROS-induced cell death through suppression of ASK1. Cancer Biol. Ther. 12, 421-426. https://doi.org/10.4161/cbt.12.5.15972
- Hsu, S.I.H., Yang, C.M., Sim, K.G., Hentschel, D.M., O'leary, E., and Bonventre, J.V. (2001). TRIP-Br: a novel family of PHD zinc finger- and bromodomain-interacting proteins that regulate the transcriptional activity of E2F-1/DP-1. EMBO J. 20, 2273-2285. https://doi.org/10.1093/emboj/20.9.2273
- Izuishi, K., Kato, K., Ogura, T., Kinoshita, T., and Esumi, H. (2000). Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. Cancer Res. 60, 6201-6207.
- Jouan-Lanhouet, S., Riquet, F., Duprez, L., Vanden Berghe, T., Takahashi, N., and Vandenabeele, P. (2014). Necroptosis, in vivo detection in experimental disease models. Semin. Cell Dev. Biol. 35, 2-13. https://doi.org/10.1016/j.semcdb.2014.08.010
- Jung, S., Li, C., Duan, J., Lee, S., Kim, K., Park, Y., Yang, Y., Kim, K., Lim, J., Cheon, C., et al. (2015). TRIP-Br1 oncoprotein inhibits autophagy, apoptosis, and necroptosis under nutrient/serum-deprived condition. Oncotarget 6, 29060-29075. https://doi.org/10.18632/oncotarget.5072
- Jung, S., Li, C., Jeong, D., Lee, S., Ohk, J., Park, M., Han, S., Duan, J., Kim, C., Yang, Y., et al. (2013). Oncogenic function of p34SEI-1 via NEDD4-1-mediated PTEN ubiquitination/degradation and activation of the PI3K/AKT pathway. Int. J. Oncol. 43, 1587-1595. https://doi.org/10.3892/ijo.2013.2064
- Jung, S., Ohk, J., Jeong, D., Li, C., Lee, S., Duan, J., Kim, C., Lim, J.S., Yang, Y., Kim, K.I.L., et al. (2014). Distinct regulatory effect of the p34SEI- 1oncoprotein on cancer metastasis in HER2/neu-positive and -negative cells. Int. J. Oncol. 45, 189-196. https://doi.org/10.3892/ijo.2014.2403
- Kaczmarek, A., Vandenabeele, P., and Krysko, D.V. (2013). Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209-223. https://doi.org/10.1016/j.immuni.2013.02.003
- Karch, J., Kanisicak, O., Brody, M.J., Sargent, M.A., Michael, D.M., and Molkentin, J.D. (2015). Necroptosis interfaces with MOMP and the MPTP in mediating cell death. PLoS One 10, 1-12.
- Karch, J., Kwong, J.Q., Burr, A.R., Sargent, M.A., Elrod, J.W., Peixoto, P.M., Martinez-Caballero, S., Osinska, H., Cheng, E.H.Y., Robbins, J., et al. (2013). Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. Elife 2013, 1-21.
- Kato, K., Tanaka, T., Sadik, G., Baba, M., Maruyama, D., Yanagida, K., Kodama, T., Morihara, T., Tagami, S., OKOCHI, M., et al. (2011). Protein kinase C stabilizes X-linked inhibitor of apoptosis protein (XIAP) through phosphorylation at Ser87 to suppress apoptotic cell death. Psychogeriatrics 11, 90-97. https://doi.org/10.1111/j.1479-8301.2011.00355.x
- Lee, S., Kim, J., Jung, S., Li, C., Yang, Y., Kim, K. I., Lim, J.S., Kim, Y., Cheon, C. Il, and Lee, M.S. (2015). SIAH1-induced p34SEI-1polyubiquitination/degradation mediates p53 preferential vitamin C cytotoxicity. Int. J. Oncol. 46, 1377-1384. https://doi.org/10.3892/ijo.2015.2840
- Lee, S.L.O., Hong, S.W., Shin, J.S., Kim, J.S., Ko, S.G., Hong, N.J., Kim, D.J., Lee, W.J., Jin, D.H., and Lee, M.S. (2009). p34SEI-1 inhibits doxorubicin-induced senescence through a pathway mediated by protein kinase C-delta and c-Jun-NH2-kinase 1 activation in human breast cancer MCF7 cells. Mol. Cancer Res. 7, 1845-1853. https://doi.org/10.1158/1541-7786.MCR-09-0086
- Li, C., Jung, S., Lee, S., Jeong, D., Yang, Y., Kim, K.I., Lim, J., Cheon, C., Kim, C., and Lee, M. (2015). Nutrient/serum starvation derived TRIP-Br3 downregulation accelerates apoptosis by destabilizing XIAP. Oncotarget 6, 7522-7535. https://doi.org/10.18632/oncotarget.3112
- Lin, Y., Choksi, S., Shen, H.M., Yang, Q.F., Hur, G.M., Kim, Y.S., Tran, J.H., Nedospasov, S.A., and Liu, Z.G. (2004).Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J. Biol. Chem. 279, 10822-10828. https://doi.org/10.1074/jbc.M313141200
- Lindqvist, L.M., Heinlein, M., Huang, D.C.S., and Vaux, D.L. (2014). Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc. Natl. Acad. Sci. U. S. A. 111, 8512-8517. https://doi.org/10.1073/pnas.1406425111
- Marchi, S., Giorgi, C., Suski, J.M., Agnoletto, C., Bononi, A., Bonora, M., De Marchi, E., Missiroli, S., Patergnani, S., Poletti, F., et al. (2012). Mitochondria-ROS crosstalk in the control of cell death and aging. J. Signal Transduct. 2012, 1-17.
- Marshall, K.D. and Baines, C.P. (2014). Necroptosis: is there a role for mitochondria? Front. Physiol. 5, 1-5. https://doi.org/10.3389/fphys.2014.00001
- Mizutani, Y., Nakanishi, H., Li, Y.N., Matsubara, H., Yamamoto, K., Sato, N., Shiraishi, T., Nakamura, T., Mikami, K., Okihara, K., et al. (2007). Overexpression of XIAP expression in renal cell carcinoma predicts a worse prognosis. Int. J. Oncol. 30, 919-925.
- Montero, J., Dutta, C., Van Bodegom, D., Weinstock, D., and Letai, A. (2013). P53 regulates a non-apoptotic death induced by ROS. Cell Death Differ. 20, 1465-1474. https://doi.org/10.1038/cdd.2013.52
- Moriwaki, K., Bertin, J., Gough, P.J., Orlowski, G.M., and Chan, F.K. (2015). Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 6, e1636. https://doi.org/10.1038/cddis.2015.16
- Newton, K. and Manning, G. (2016). Necroptosis and inflammation. Annu. Rev. Biochem. 85, 743-763. https://doi.org/10.1146/annurev-biochem-060815-014830
- Nikoletopoulou, V., Markaki, M., Palikaras, K., and Tavernarakis, N. (2013). Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta - Mol. Cell Res. 1833, 3448-3459. https://doi.org/10.1016/j.bbamcr.2013.06.001
- Pasparakis, M. and Vandenabeele, P. (2015). Necroptosis and its role in inflammation. Nature 517, 311-320. https://doi.org/10.1038/nature14191
- Redza-Dutordoir, M. and Averill-Bates, D.A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta - Mol. Cell Res. 1863, 2977-2992. https://doi.org/10.1016/j.bbamcr.2016.09.012
- Riedl, S.J., Renatus, M., Schwarzenbacher, R., Zhou, Q., Sun, C., Fesik, S.W., Liddington, R.C., and Salvesen, G.S. (2001). Structural basis for the inhibition of caspase-3 by XIAP. Cell 104, 791-800. https://doi.org/10.1016/S0092-8674(01)00274-4
- Rohde, K., Kleinesudeik, L., Roesler, S., Lowe, O., Heidler, J., Schroder, K., Wittig, I., Drose, S., and Fulda, S. (2017). A Bak-dependent mitochondrial amplification step contributes to Smac mimetic/glucocorticoid-induced necroptosis. Cell Death Differ. 24, 83-97. https://doi.org/10.1038/cdd.2016.102
- Shiozaki, E.N., Chai, J., Rigotti, D.J., Riedl, S.J., Li, P., Srinivasula, S.M., Alnemri, E.S., Fairman, R., and Shi, Y. (2003). Mechanism of XIAP-mediated inhibition of caspase-9. Mol. Cell 11, 519-527. https://doi.org/10.1016/S1097-2765(03)00054-6
- Su, Z., Yang, Z., Xie, L., DeWitt, J.P., and Chen, Y. (2016). Cancer therapy in the necroptosis era. Cell Death Differ. 23, 748-756. https://doi.org/10.1038/cdd.2016.8
- Su, Z., Yang, Z., Xu, Y., Chen, Y., and Yu, Q. (2015). Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer 14, 48. https://doi.org/10.1186/s12943-015-0321-5
- Sugimoto, M., Nakamura, T., Ohtani, N., Hampson, L., Hampson, I.N., Shimamoto, A., Furuichi, Y., Okumura, K., Niwa, S., Taya, Y., et al. (1999). Regulation of CDK4 activity by a novel CDK4-binding protein, p34(SEI-1). Genes Dev. 13, 3027-3033. https://doi.org/10.1101/gad.13.22.3027
- Tang, D.J., Hu, L., Xie, D., Wu, Q.L., Fang, Y., Zeng, Y., Sham, J.S.T., and Guan, X.Y. (2005). Oncogenic transformation by SEI-1 is associated with chromosomal instability. Cancer Res. 65, 6504-6508. https://doi.org/10.1158/0008-5472.CAN-05-0351
- Tang, T.C., Sham, J.S.T., Xie, D., Cancer, O., and Lines, C. (2002). Identification of a Candidate Oncogene SEI-1 within a minimal amplified region at 19q13.1 in ovarian cancer cell lines advances in brief identification of a candidate oncogene SEI-1 within a minimal amplified region. Cancer Res. 62, 7157-7161.
- Teng, X., Degterev, A., Jagtap, P., Xing, X., Choi, S., Denu, R., Yuan, J., and Cuny, G.D. (2005). Structure-activity relationship study of novel necroptosis inhibitors. Bioorg. Med. Chem. Lett. 15, 5039-5044. https://doi.org/10.1016/j.bmcl.2005.07.077
- Tsujimoto, Y. and Shimizu, S. (2007). Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12, 835-840. https://doi.org/10.1007/s10495-006-0525-7
- Van Themsche, C., Leblanc, V., Parent, S., and Asselin, E. (2009). X-linked inhibitor of apoptosis protein (XIAP) regulates PTEN ubiquitination, content, and compartmentalization. J. Biol. Chem. 284, 20462-20466. https://doi.org/10.1074/jbc.C109.009522
- Vandenabeele, P., Galluzzi, L., Vanden Berghe, T., and Kroemer, G. (2010). Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700-714. https://doi.org/10.1038/nrm2970
- Vaseva, A.V., Marchenko, N.D., Ji, K., Tsirka, S.E., Holzmann, S., and Moll, U.M. (2012). P53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149, 1536-1548. https://doi.org/10.1016/j.cell.2012.05.014
- Wang, H., Sun, L., Su, L., Rizo, J., Liu, L., Wang, L.F., Wang, F.S., and Wang, X. (2014). Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133-146. https://doi.org/10.1016/j.molcel.2014.03.003
- Wang, Z., Jiang, H., Chen, S., Du, F., and Wang, X. (2012). The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148, 228-243. https://doi.org/10.1016/j.cell.2011.11.030
-
Wang, Z., Kishimoto, H., Bhat-Nakshatri, P., Crean, C., and Nakshatri, H. (2005).
$TNF{\alpha}$ resistance in MCF-7 breast cancer cells is associated with altered subcellular localization of p21CIP1and p27KIP1[4]. Cell Death Differ. 12, 98-100. https://doi.org/10.1038/sj.cdd.4401515 - Xu, Y.Z., Kanagaratham, C., Youssef, M., and Radzioch, D. (2016). New frontiers in cancer chemotherapy: targeting cell death pathways. In Cell Biology: New Insights, S. Najman, ed. (Rijeka, Croatia: InTech), pp. 93-140.
피인용 문헌
- Exploring the Role of TRIP-Brs in Human Breast Cancer: An Investigation of Expression, Clinicopathological Significance, and Prognosis vol.19, 2020, https://doi.org/10.1016/j.omto.2020.09.003
- Marine cyanobacterium Spirulina maxima as an alternate to the animal cell culture medium supplement vol.11, pp.1, 2020, https://doi.org/10.1038/s41598-021-84558-2